


Introduction to Cosmology
The second edition of Introduction to Cosmology is an exciting update of this
award-winning textbook. It is aimed primarily at advanced undergraduate
students in physics and astronomy, but is also useful as a supplementary text
at higher levels. It explains modern cosmological concepts, such as dark
energy, in the context of the Big Bang theory. Its clear, lucid writing style,
with a wealth of useful everyday analogies, makes it exceptionally engaging.
Emphasis is placed on the links between theoretical concepts of cosmology
and the observable properties of the universe, building deeper physical
insights in the reader. The second edition includes recent observational
results, fuller descriptions of special and general relativity, expanded
discussions of dark energy, and a new chapter on baryonic matter that makes
up stars and galaxies. It is an ideal textbook for the era of precision
cosmology in the accelerating universe.

BARBARA RYDEN received her PhD in astrophysical sciences from Princeton
University, New Jersey in 1987. After postdocs at the Harvard-Smithsonian
Center for Astrophysics and the Canadian Institute for Theoretical
Astrophysics, she joined the astronomy faculty at The Ohio State University,
where she is now a full professor. She has over twenty years of experience in
teaching, at levels ranging from introductory undergraduate courses to
advanced graduate seminars. She won the Chambliss Astronomical Writing
Award for the first edition of Introduction to Cosmology (2002), and is the
co-author, with Bradley Peterson, of Foundations of Astrophysics (2010).



Introduction to Cosmology

Second Edition

Barbara Ryden
The Ohio State University



University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of education,
learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107154834

© Pearson Education, Inc., 2003, Barbara Ryden 2017

This publication is in copyright. Subject to statutory exception and to the provisions of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First edition published in 2002 by Pearson Education, Inc.
Second edition published 2017

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Ryden, Barbara Sue, author.
Title: Introduction to cosmology / Barbara Ryden,
The Ohio State University.
Description: Second edition. | New York, NY : Cambridge University Press, 2017. |
Includes bibliographical references and index.
Identifiers: LCCN 2016040124 | ISBN 9781107154834 (Hardback ; alk. paper) |
ISBN 1107154839 (Hardback ; alk. paper)
Subjects: LCSH: Cosmology.
Classification: LCC QB981 .R93 2016 | DDC 523.1–dc23 LC record
available at https://lccn.loc.gov/2016040124

ISBN 978-1-107-15483-4 Hardback

Additional resources for this publication at www.cambridge.org/cosmology

http://www.cambridge.org
http://www.cambridge.org/9781107154834
https://lccn.loc.gov/2016040124
http://www.cambridge.org/cosmology


Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party Internet Web sites referred to in this publication and does not
guarantee that any content on such Web sites is, or will remain, accurate or appropriate.



For my husband



Contents

Preface

1 Introduction

2 Fundamental Observations
2.1 The Night Sky is Dark
2.2 The Universe is Isotropic and Homogeneous
2.3 Redshift is Proportional to Distance
2.4 Different Types of Particles
2.5 Cosmic Microwave Background
Exercises

3 Newton versus Einstein
3.1 The Way of Newton
3.2 The Special Way of Einstein
3.3 The General Way of Einstein
3.4 Describing Curvature
3.5 The Robertson–Walker Metric
3.6 Proper Distance
Exercises

4 Cosmic Dynamics
4.1 Einstein’s Field Equation



4.2 The Friedmann Equation
4.3 The Fluid and Acceleration Equations
4.4 Equations of State
4.5 Learning to Love Lambda
Exercises

5 Model Universes
5.1 Evolution of Energy Density
5.2 Empty Universes
5.3 Single-component Universes

5.3.1 Matter only
5.3.2 Radiation only
5.3.3 Lambda only

5.4 Multiple-component Universes
5.4.1 Matter + Curvature
5.4.2 Matter + Lambda
5.4.3 Matter + Curvature + Lambda
5.4.4 Radiation + Matter

5.5 Benchmark Model
Exercises

6 Measuring Cosmological Parameters
6.1 “A Search for Two Numbers”
6.2 Luminosity Distance
6.3 Angular-diameter Distance
6.4 Standard Candles and H0

6.5 Standard Candles and Acceleration
Exercises

7 Dark Matter
7.1 Visible Matter



7.2 Dark Matter in Galaxies
7.3 Dark Matter in Clusters
7.4 Gravitational Lensing
7.5 What’s the Matter?
Exercises

8 The Cosmic Microwave Background
8.1 Observing the CMB
8.2 Recombination and Decoupling
8.3 The Physics of Recombination
8.4 Temperature Fluctuations
8.5 What Causes the Fluctuations?
Exercises

9 Nucleosynthesis and the Early Universe
9.1 Nuclear Physics and Cosmology
9.2 Neutrons and Protons
9.3 Deuterium Synthesis
9.4 Beyond Deuterium
9.5 Baryon–Antibaryon Asymmetry
Exercises

10 Inflation and the Very Early Universe
10.1 The Flatness Problem
10.2 The Horizon Problem
10.3 The Monopole Problem
10.4 The Inflation Solution
10.5 The Physics of Inflation
Exercises

11 Structure Formation: Gravitational Instability



11.1 The Matthew Effect
11.2 The Jeans Length
11.3 Instability in an Expanding Universe
11.4 The Power Spectrum
11.5 Hot versus Cold
11.6 Baryon Acoustic Oscillations
Exercises

12 Structure Formation: Baryons and Photons
12.1 Baryonic Matter Today
12.2 Reionization of Hydrogen
12.3 The First Stars and Quasars
12.4 Making Galaxies
12.5 Making Stars
Exercises

Epilogue
Table of Useful Constants
Index



Preface

The first edition of this book was based on my lecture notes for an upper-
level undergraduate cosmology course at The Ohio State University. The
students taking the course were primarily juniors and seniors majoring in
physics and astronomy. In my lectures, I assumed that my students, having
triumphantly survived freshman and sophomore physics, had a basic
understanding of electrodynamics, statistical mechanics, classical dynamics,
and quantum physics. As far as mathematics was concerned, I assumed that,
like modern major-generals, they were very good at integral and differential
calculus. Readers of this book are assumed to have a similar background in
physics and mathematics. In particular, no prior knowledge of general
relativity is assumed; the (relatively) small amounts of general relativity
needed to understand basic cosmology are introduced as needed.

The second edition that you are reading now is updated with observational
and theoretical developments during the 14 years that have elapsed since the
first edition. It has been improved by many comments by readers. (My thanks
go to the eagle-eyed readers who caught the typographical errors that snuck
into the first edition.) The second edition also contains an extended
discussion of structure formation in the final two chapters. For a brief course
on cosmology, the first ten chapters can stand on their own.

Unfortunately, the National Bureau of Standards has not gotten around to
establishing a standard notation for cosmological equations. It seems that
every cosmology book has its own notation; this book is no exception. My
main motivation was to make the notation as clear as possible for the
cosmological novice.

Many of the illustrations in this book were adapted from figures in
published scientific papers; my thanks go to the authors of those papers for
granting permission to use their figures or to replot their hard-won data.
Particular thanks go to Avishai Dekel (Figure 2.2), Wendy Freedman (Figure



2.5), David Leisawitz (Figure 8.1), Alain Coc (Figure 9.4), Richard Cyburt
(Figure 9.5), Rien van de Weygaert (Figure 11.1), Ashley Ross (Figure 11.6),
Xiaohui Fan (Figure 12.3), and John Beacom (Figure 12.4). Extra thanks are
due to Anže Slosar and José Alberto Vázquez for their assistance with
Figures 6.6, 8.7, and 11.7.

Many people (too many to name individually) helped in the making of this
book. I owe particular thanks to the students who took my undergraduate
cosmology course at Ohio State University. Their feedback, including
nonverbal feedback such as frowns and snores during lectures, greatly
improved the lecture notes on which the first edition was based. The students
of the graduate cosmology course at Ohio State have assisted in the
development of the second edition, by field-testing the end-of-chapter
problems, proposing new problems, and acting as all-around critics of the
manuscript. Adam Black and Nancy Gee, at Pearson Addison Wesley, made
possible the great leap from rough lecture notes to polished book. Vince
Higgs and Rachel Cox, at Cambridge University Press, helped with the
second great leap to a new, improved second edition. The reviewers of the
text, in both its first and second editions, pointed out many omissions and
suggested many improvements.

The first edition of this book was dedicated to Rick Pogge, who acted as
my computer maven, graphics guru, personal chef, and general sanity check.
Obviously, there was only one thing to do with such a paragon. Reader, I
married him.



1

Introduction

Cosmology is the study of the universe, or cosmos, regarded as a whole.
Attempting to cover the study of the entire universe in a single volume may
seem like a megalomaniac’s dream. The universe, after all, is richly textured,
with structures on a vast range of scales; planets orbit stars, stars are collected
into galaxies, galaxies are gravitationally bound into clusters, and even
clusters of galaxies are found within larger superclusters. Given the
complexity of the universe, the only way to condense its history into a single
book is by a process of ruthless simplification. For much of this book,
therefore, we will be considering the properties of an idealized, perfectly
smooth, model universe. Only near the end of the book will we consider how
relatively small objects, such as galaxies, clusters, and superclusters, are
formed as the universe evolves. It is amusing to note in this context that the
words cosmology and cosmetology come from the same Greek root: the word
kosmos, meaning harmony or order. Just as cosmetologists try to make a
human face more harmonious by smoothing over small blemishes such as
pimples and wrinkles, cosmologists sometimes must smooth over small
“blemishes” such as galaxies.

A science that regards entire galaxies as being small objects might seem,
at first glance, very remote from the concerns of humanity. Nevertheless,
cosmology deals with questions that are fundamental to the human condition.
The questions that vex humanity are given in the title of a painting by Paul
Gauguin (Figure 1.1): “Where do we come from? What are we? Where are
we going?” Cosmology grapples with these questions by describing the past,
explaining the present, and predicting the future of the universe.
Cosmologists ask questions such as “What is the universe made of? Is it finite
or infinite in spatial extent? Did it have a beginning some time in the past?
Will it come to an end some time in the future?”



Figure 1.1 Where Do We Come From? What Are We? Where Are We Going? Paul
Gauguin, 1897–98. [Museum of Fine Arts, Boston]

Cosmology deals with distances that are very large, objects that are very
big, and timescales that are very long. Cosmologists frequently find that the
standard SI units are not convenient for their purposes: the meter (m) is
awkwardly short, the kilogram (kg) is awkwardly tiny, and the second (s) is
awkwardly brief. Fortunately, we can adopt the units that have been
developed by astronomers for dealing with large distances, masses, and
times.

One distance unit used by astronomers is the astronomical unit (AU),
equal to the mean distance between the Earth and Sun; in metric units, 1 AU
= 1.50 × 1011 m. Although the astronomical unit is a useful length scale
within the solar system, it is small compared to the distances between stars.
To measure interstellar distances, it is useful to use the parsec (pc), equal to
the distance at which 1 AU subtends an angle of 1 arcsecond; in metric units,
1 pc = 3.09 × 1016 m. For example, we are at a distance of 1.30 pc from
Proxima Centauri (a small, relatively cool star that is the Sun’s nearest
neighboring star); we are at a distance of 8500 pc from the center of our
galaxy, the Milky Way Galaxy. Although the parsec is a useful length scale
within our galaxy, it is small compared to the distances between galaxies. To
measure intergalactic distances, we use the megaparsec (Mpc), equal to 106

pc, or 3.09 × 1022 m. For example, we are at a distance of 0.76 Mpc from
M31 (otherwise known as the Andromeda galaxy) and 15 Mpc from the
Virgo cluster (the nearest big cluster of galaxies).

The standard unit of mass used by astronomers is the solar mass (M⊙); in



metric units, the Sun’s mass is 1M⊙ = 1.99 × 1030 kg. The total mass of our
galaxy is not known as accurately as the mass of the Sun; in round numbers,
though, it is Mgal ∼ 1012 M⊙. The Sun, incidentally, also provides the standard
unit of power used in astronomy. The Sun’s luminosity (that is, the rate at
which it radiates away energy in the form of light) is 1 L⊙ = 3.83×1026 watts.
The total luminosity of our galaxy is not known as accurately as the
luminosity of the Sun; a good estimate, though, is Lgal ≈ 3 × 1010 L⊙.

For times much longer than a second, it is convenient to use the year (yr)
as a unit of time, with 1 yr ≈ 3.16 × 107 s. In a cosmological context, a year is
frequently an inconveniently short period of time, so cosmologists often use
megayears (Myr), with 1Myr = 106 yr = 3.16 × 1013 s. Even longer
timescales call for use of gigayears (Gyr), with 1 Gyr = 109 yr = 3.16×1016 s.
For example, the age of the Earth is more conveniently written as 4.57 Gyr
than as 1.44×1017 s.

In addition to dealing with very large things, cosmology also deals with
very small things. Early in its history, as we shall see, the universe was very
hot and dense, and some interesting particle physics phenomena were
occurring. Consequently, particle physicists have plunged into cosmology,
introducing some terminology and units of their own. For instance, particle
physicists tend to measure energy units in electron volts (eV) instead of
joules (J). The conversion factor between electron volts and joules is 1 eV =
1.60 × 10−19 J. The rest energy of an electron, for instance, is mec2 = 511 000
eV = 0.511 MeV, and the rest energy of a proton is mpc2 = 938.27 MeV =
1836.1mec2.

When you stop to think of it, you realize that the units of meters,
megaparsecs, kilograms, solar masses, seconds, and gigayears could only be
devised by ten-fingered Earthlings obsessed with the properties of water. An
eighteen-tentacled silicon-based lifeform from a planet orbiting Betelgeuse
would probably devise a different set of units. A more universal, less
culturally biased system of units is the Planck system, based on the universal
constants G, c, and ħ. Combining the Newtonian gravitational constant, G =
6.67 × 10−11 m3 kg−1 s−2, the speed of light, c = 3.00 × 108 ms−1, and the
reduced Planck constant, ħ = h/(2π) = 1.05 × 10−34 J s = 6.58 × 10−16 eV s,
yields a unique length scale, known as the Planck length:



(1.1)

The same constants can be combined to yield the Planck mass,1

(1.2)

and the Planck time,

(1.3)

Using Einstein’s relation between mass and energy, we can also define the
Planck energy,

(1.4)

By bringing the Boltzmann constant, k = 8.62 × 10−5 eVK−1, into the act, we
can also define the Planck temperature,

(1.5)

When distance, mass, time, and temperature are measured in the appropriate
Planck units, then c = k = ħ = G = 1. This is convenient for individuals who
have difficulty in remembering the numerical values of physical constants.
However, using Planck units can have potentially confusing side effects. For
instance, many cosmology texts, after noting that c = k = ħ = G = 1 when
Planck units are used, then proceed to omit c, k, ħ, and/or G from all
equations. For instance, Einstein’s celebrated equation, E = mc2, becomes E =
m. The blatant dimensional incorrectness of such an equation is jarring, but it
simply means that the rest energy of an object, measured in units of the



Planck energy, is equal to its mass, measured in units of the Planck mass. In
this book, however, I will retain all factors of c, k, ħ, and G, for the sake of
clarity.

Here we will deal with distances ranging from the Planck length to 104

Mpc or so, a span of some 61 orders of magnitude. Dealing with such a wide
range of length scales requires a stretch of the imagination, to be sure.
However, cosmologists are not permitted to let their imaginations run totally
unfettered. Cosmology, I emphasize strongly, is based ultimately on
observation of the universe around us. Even in ancient times, cosmology was
based on observations; unfortunately, those observations were frequently
imperfect and incomplete. Ancient Egyptians, for instance, looked at the
desert plains stretching away from the Nile valley and the blue sky overhead.
Based on their observations, they developed a model of the universe in which
a flat Earth (symbolized by the earth god Geb in Figure 1.2) was covered by a
solid dome (symbolized by the sky goddess Nut). Underneath the sky dome,
the disk of the Sun was carried from east to west by the sun god Ra. Greek
cosmology was based on more precise and sophisticated observations.
Ancient Greek astronomers deduced, from their observations, that the Earth
and Moon are spherical, that the Sun is much farther from the Earth than the
Moon is, and that the distance from the Earth to the stars is much greater than
the Earth’s diameter. Based on this knowledge, Greek cosmologists devised a
“two-sphere” model of the universe, in which the spherical Earth is
surrounded by a much larger celestial sphere, a spherical shell to which the
stars are attached. Between the Earth and the celestial sphere, in this model,
the Sun, Moon, and planets move on their complicated apparatus of epicycles
and deferents.



Figure 1.2 The ancient Egyptian view of the cosmos: the sky goddess Nut arches over the
earth god Geb, while the sun god Ra travels between them in a reed boat. (Book of the
Dead of Nespakashuty, ca. 1000 BC) [Musée du Louvre, Paris]

Although cosmology is ultimately based on observation, sometimes
observations temporarily lag behind theory. During periods when data are
lacking, cosmologists may adopt a new model for aesthetic or philosophical
reasons. For instance, when Copernicus proposed a new Sun-centered model
of the universe, to replace the Earth-centered two-sphere model of the
Greeks, he didn’t base his model on new observational discoveries. Rather,
he believed that putting the Earth in motion around the Sun resulted in a
conceptually simpler, more appealing model of the universe. Direct
observational evidence didn’t reveal that the Earth revolves around the Sun,
rather than vice versa, until the discovery of the aberration of starlight in the
year 1728, nearly two centuries after the death of Copernicus. Foucault didn’t
demonstrate the rotation of the Earth, another prediction of the Copernican
model, until 1851, over three centuries after the death of Copernicus.
However, although observations sometimes lag behind theory in this way,
every cosmological model that isn’t eventually supported by observational
evidence must remain pure speculation.

The current standard model for the universe is the “Hot Big Bang” model,
which states that the universe has expanded from an initially hot and dense
state to its current relatively cool and tenuous state, and that the expansion is



still going on today. To see why cosmologists have embraced the Hot Big
Bang model, let us turn, in the next chapter, to the fundamental observations
on which modern cosmology is based.
1 The Planck mass is roughly equal to the mass of a grain of sand a quarter of a millimeter

across.



2

Fundamental Observations

Some of the observations on which modern cosmology is based are highly
complex, requiring elaborate apparatus and sophisticated data analysis.
However, other observations are surprisingly simple. Let’s start with an
observation that is deceptive in its extreme simplicity.

2.1 The Night Sky is Dark
Step outside on a clear, moonless night, far from city lights, and look upward.
You will see a dark sky, with roughly two thousand stars scattered across it.
The fact that the night sky is dark at visible wavelengths, instead of being
uniformly bright with starlight, is known as Olbers’ paradox, after the
astronomer Heinrich Olbers, who wrote a scientific paper on the subject in
1823. As it happens, Olbers was not the first person to think about Olbers’
paradox. As early as 1576, Thomas Digges mentioned how strange it is that
the night sky is dark, with only a few pinpoints of light to mark the location
of stars.1

Why should it be paradoxical that the night sky is dark? Most of us simply
take for granted the fact that daytime is bright and nighttime is dark. The
darkness of the night sky certainly posed no problems to the ancient
Egyptians or Greeks, to whom stars were lights stuck to a dome or sphere.
However, the cosmological model of Copernicus required that the distance to
stars be very much larger than an astronomical unit; otherwise, the parallax of
the stars, as the Earth goes around on its orbit, would be large enough to see
with the naked eye. Moreover, since the Copernican system no longer
requires that the stars be attached to a rotating celestial sphere, the stars can
be at different distances from the Sun. These liberating realizations led
Thomas Digges, and other post-Copernican astronomers, to embrace a model
in which stars are large, opaque, glowing spheres like the Sun, scattered



throughout infinite space.
Let’s compute how bright we expect the night sky to be in an infinite

universe. Let n⋆ be the number density of stars in the universe; averaged over
large scales, this number is n⋆ ∼ 109 Mpc−3. Let R⋆ be the typical radius of a
star. Although stars have a range of sizes, from dwarfs to supergiants, we
may adopt the Sun as a typical mid-sized star, with R⋆ ∼ R⊙ = 7.0 × 108 m =
2.3 × 10−14 Mpc. Consider looking outward in some direction through the
universe. If you draw a cylinder of radius R⋆ around your line of sight, as
shown in Figure 2.1, then if a star’s center lies within that cylinder, the
opaque star will block your view of more distant objects. If the cylinder’s
length is λ, then its volume is  and the average number of stars that
have their centers inside the cylinder is

(2.1)

Figure 2.1 A line of sight through the universe eventually encounters an opaque star.

Since it requires only one star to block your view, the typical distance you
will be able to see before a star blocks your line of sight is the distance λ for
which N = 1. From Equation (2.1), this distance is

(2.2)

For concreteness, if we take n⋆ ∼ 109 Mpc−3 and 
then you can see a distance



(2.3)

before your line of sight intercepts a star. This is a very large distance; but it
is a finite distance. We therefore conclude that in an infinite universe (or one
that stretches at least 1018 Mpc in all directions), the sky will be completely
paved with stars.

What does this paving imply for the brightness of the sky? If a star of
radius R⋆ is at a distance r ≫ R⋆, its angular area, in steradians, will be

(2.4)

If the star’s luminosity is L⋆, then its flux measured at a distance r will be

(2.5)

The surface brightness of the star, in watts per square meter of your pupil (or
telescope mirror) per steradian, will then be

(2.6)

independent of the distance to the star. Thus, the surface brightness of a sky
paved with stars will be equal to the (distance-independent) surface
brightness of an individual star. We therefore conclude that in an infinite
universe (or one that stretches at least 1018 Mpc in all directions), the entire
sky, night and day, should be as dazzlingly bright as the Sun’s disk.

This is utter nonsense. The surface brightness of the Sun is ∑⊙ ≈ 5 × 10−3

watts m−2 arcsec−2. By contrast, the surface brightness of the dark night sky
is ∑ ∼ 5×10−17 watts m−2 arcsec−2. Thus, my estimate of the surface
brightness of the night sky (“It’s the same as the Sun’s”) is wrong by a factor



of 100 trillion.
One (or more) of the assumptions that went into my estimate of the sky

brightness must be wrong. Let’s scrutinize some of the assumptions. One
assumption that I made is that space is transparent over distances of 1018

Mpc. This might not be true. Heinrich Olbers himself tried to resolve Olbers’
paradox by proposing that distant stars are hidden from view by interstellar
matter that absorbs starlight. This resolution does not work in the long run,
because the interstellar matter is heated by starlight until it has the same
temperature as the surface of a star. At that point, the interstellar matter emits
as much light as it absorbs, and glows as brightly as the stars themselves.

A second assumption that I made is that the universe is infinitely large.
This might not be true. If the universe extends to a maximum distance rmax ≪
λ, then only a fraction F ∼ rmax/λ of the night sky will be covered with stars.
This result will also be found if the universe is infinitely large, but is devoid
of stars beyond a distance rmax.

A third assumption, slightly more subtle than the previous ones, is that the
universe is infinitely old. This might not be true. Because the speed of light is
finite, when we look farther out in space, we are looking farther out in time.
Thus, we see the Sun as it was 8.3 minutes ago, Proxima Centauri as it was
4.2 years ago, and M31 as it was 2.5 million years ago. If the universe has a
finite age, t0 ≪ λ/c, then we are not yet able to see stars at a distance greater
than r ∼ ct0, and only a fraction F ∼ ct0/λ of the night sky will be covered with
stars. This result will also be found if the universe is infinitely old, but has
only contained stars for a finite time t0.

A fourth assumption is that the surface brightness of a star is independent
of distance, as derived in Equation 2.6. This might not be true. The
assumption of constant surface brightness would have seemed totally
innocuous to Olbers and other nineteenth-century astronomers, who assumed
that the universe was static. However, in an expanding universe, the surface
brightness of distant light sources is decreased relative to what you would see
in a static universe. (In a contracting universe, the surface brightness would
be increased, which would only make the problem of a bright night sky even
worse.)

Thus, the infinitely large, eternally old, static universe that Thomas
Digges and his successors pictured simply does not hold up to scrutiny. This
is a textbook, not a suspense novel, so I’ll tell you right now: the primary



resolution to Olbers’ paradox comes from the fact that the universe has a
finite age. The stars beyond some finite distance, called the horizon distance,
are invisible to us because their light hasn’t had time to reach us yet. A
particularly amusing bit of cosmological trivia is that the first person to hint
at the correct resolution of Olbers’ paradox was Edgar Allan Poe.2 In his
essay “Eureka: A Prose Poem,” completed in 1848, Poe wrote, “Were the
succession of stars endless, then the background of the sky would present us
an [sic] uniform density... since there could be absolutely no point, in all that
background, at which would not exist a star. The only mode, therefore, in
which, under such a state of affairs, we could comprehend the voids which
our telescopes find in innumerable directions, would be by supposing the
distance of the invisible background so immense that no ray from it has yet
been able to reach us at all.”

2.2 The Universe is Isotropic and Homogeneous
What does it mean to state that the universe is isotropic and homogeneous?
Saying that the universe is isotropic means that there are no preferred
directions in the universe; it looks the same no matter which way you point
your telescope. Saying that the universe is homogeneous means that there are
no preferred locations in the universe; it looks the same no matter where you
set up your telescope. Note the very important qualifier: the universe is
isotropic and homogeneous on large scales. In this context, “large scales”
means that the universe is only isotropic and homogeneous on scales of
roughly 100 Mpc or more.

The isotropy of the universe is not immediately obvious. In fact, on small
scales, the universe is blatantly anisotropic. Consider, for example, a sphere 3
m in diameter, centered on your navel (Figure 2.2a). Within this sphere, there
is a preferred direction; it is the direction commonly referred to as “down.” It
is easy to determine the vector pointing down. Just let go of a small dense
object. The object doesn’t hover in midair, and it doesn’t move in a random
direction; it falls down, toward the center of the Earth.



Figure 2.2 (a) A sphere 3 m in diameter, centered on your navel. (b) A sphere 3 AU in
diameter, centered on your navel. (c) A sphere 3 Mpc in diameter, centered on your navel.
(d) A sphere 200 Mpc in diameter, centered on your navel. Shown is the smoothed number
density of galaxies. The heavy contour is drawn at the mean density; darker regions
represent higher density. [Dekel et al. 1999, ApJ, 522, 1]

On significantly larger scales, the universe is still anisotropic. Consider,
for example, a sphere 3 AU in diameter, centered on your navel (Figure
2.2b). Within this sphere, there is a preferred direction; it is the direction
pointing toward the Sun, which is by far the most massive and most luminous
object within the sphere. It is easy to determine the vector pointing toward
the Sun. Just step outside on a sunny day, and point to that really bright disk
of light up in the sky.

On still larger scales, the universe is still anisotropic. Consider, for
example, a sphere 3 Mpc in diameter, centered on your navel (Figure 2.2c).
This sphere contains the Local Group of galaxies, a small cluster of about a
hundred galaxies. By far the most massive and most luminous galaxies in the
Local Group are our own galaxy and M31, which together contribute about
86 percent of the total luminosity within the 3 Mpc sphere. Thus, within this
sphere, our galaxy and M31 define a preferred direction. It is fairly easy to



determine the vector pointing from our galaxy to M31. Just step outside on a
clear night when the constellation Andromeda is above the horizon, and point
to the fuzzy oval in the middle of the constellation.

It isn’t until you get to considerably larger scales that the universe can be
considered as isotropic. Consider a sphere 200 Mpc in diameter, centered on
your navel. Figure 2.2d shows a slice through such a sphere, with
superclusters of galaxies indicated as dark patches. The Perseus–Pisces
supercluster is on the right, the Hydra–Centaurus supercluster is on the left,
and the edge of the Coma supercluster is just visible at the top of Figure 2.2d.
Superclusters are typically ∼ 100 Mpc along their longest dimensions, and are
separated by voids (low density regions) which are typically ∼ 100 Mpc
across. These are the largest structures in the universe, it seems; surveys of
the universe on still larger scales don’t find “superduperclusters.”

On small scales, the universe is obviously inhomogeneous, or lumpy, in
addition to being anisotropic. For instance, a sphere 3 m in diameter, centered
on your navel, will have an average density of ∼ 100 kg m−3, in round
numbers. However, the average matter density of the universe as a whole is
ρ0 ≈ 2.7 × 10−27 kg m−3. Thus, on a scale d ∼ 3 m, the patch of the universe
surrounding you is more than 28 orders of magnitude denser than average.

On significantly larger scales, the universe is still inhomogeneous. A
sphere 3 AU in diameter, centered on your navel, has an average density of 4
× 10−5 kg m−3; that’s 22 orders of magnitude denser than the average for the
universe.

On still larger scales, the universe is still inhomogeneous. A sphere 3 Mpc
in diameter, centered on your navel, will have an average density of ∼ 3 ×
10−26 kg m−3, still an order of magnitude denser than the universe as a whole.
It’s only when you contemplate a sphere ∼ 100 Mpc in diameter that a sphere
centered on your navel is not overdense compared to the universe as a whole.

Note that homogeneity does not imply isotropy. A sheet of paper printed
with stripes (Figure 2.3 left) is homogeneous on scales larger than the stripe
width, but it is not isotropic. The direction of the stripes provides a preferred
direction by which you can orient yourself. Note also that isotropy around a
single point does not imply homogeneity. A sheet of paper printed with a
bullseye (Figure 2.3 right) is isotropic around the center of the bullseye, but it
is not homogeneous. The rings of the bullseye look different far from the
center than they look close to the center. You can tell where you are relative
to the center by measuring the radius of curvature of the nearest ring.



Figure 2.3 Left: a pattern that is anisotropic, but is homogeneous on scales larger than the
stripe width. Right: a pattern that is isotropic about the origin, but is inhomogeneous.

In general, then, saying that something is homogeneous is quite different
from saying it is isotropic. However, modern cosmologists have adopted the
Copernican principle, which states “There is nothing special or privileged
about our location in the universe.” The Copernican principle holds true only
on large scales (of 100 Mpc or more). On smaller scales, your navel
obviously is in a special location. Most spheres 3 m across don’t contain a
sentient being; most spheres 3 AU across don’t contain a star; most spheres 3
Mpc across don’t contain a pair of bright galaxies. However, most spheres
over 100 Mpc across do contain roughly the same pattern of superclusters
and voids, statistically speaking. The universe, on scales of 100 Mpc or more,
appears to be isotropic around us. Isotropy around any point in the universe,
such as your navel, combined with the Copernican principle, implies isotropy
around every point in the universe; and isotropy around every point in the
universe does imply homogeneity.

The observed isotropy of the universe on scales 100 Mpc or more,
combined with the assumption of the Copernican principle, leads us to state
“The universe (on large scales) is homogeneous and isotropic.” This
statement is known as the cosmological principle. Although the Copernican
principle forbids us to say “We’re number one!”, the cosmological principle
permits us to say “We’re second to none!”

2.3 Redshift is Proportional to Distance
When we look at a galaxy at visible wavelengths, we detect primarily the



light from the stars that the galaxy contains. Thus, when we take a galaxy’s
spectrum at visible wavelengths, it typically contains absorption lines created
in the stars’ relatively cool upper atmospheres; galaxies with active galactic
nuclei will also show emission lines from the hot gas in their nuclei. Suppose
we consider a particular absorption or emission line whose wavelength, as
measured in a laboratory here on Earth, is λem. The wavelength we measure
for the same line in a distant galaxy’s observed spectrum, λob, will not, in
general, be the same. We say that the galaxy has a redshift z, given by the
formula

(2.7)

Strictly speaking, when z < 0, this quantity is called a blueshift, rather than a
redshift. However, the vast majority of galaxies have z > 0.

The fact that the light from galaxies is generally redshifted to longer
wavelengths, rather than blueshifted to shorter wavelengths, was not known
until the twentieth century. In 1912, Vesto Slipher at the Lowell Observatory
measured the shift in wavelength of the light from the galaxy M31. He found
z = −0.001, meaning that M31 is one of the few galaxies that exhibit a
blueshift rather than a redshift. Slipher interpreted the shift in wavelength as
being due to the Doppler effect. Since |z| ≪ 1 for M31, he used the classical,
nonrelativistic relation for the Doppler shift, z = v/c, to compute that M31 is
moving toward the Earth with a speed v = −0.001c = −300 km s−1.

In the year 1927, the Belgian cosmologist Georges Lemaître compiled a
list of 42 galaxies whose wavelength shift had been measured, mostly by
Vesto Slipher. Of these galaxies, 37 were redshifted, and only 5 were
blueshifted. This is a notable excess of redshifts; by analogy, if you have a
fair coin and flip it 42 times, the chance of getting “heads” 37 or more times
is P ≈ 2 × 10−7. The average radial velocity of all 42 galaxies in the sample
was v = +600 km s−1. Lemaître pointed out that these relatively high speeds
(much higher than the average speed of stars within our galaxy) could result
from an expansion of the universe. Using an estimated average distance of r
= 0.95 Mpc for the galaxies in his sample, he concluded that the expansion
was described by the parameter K ≡ v/r = 625 km s−1 Mpc−1.

Although Lemaître made an estimate of the average distance to the



galaxies in his sample, finding an accurate distance to an individual galaxy
was quite difficult. The astronomer Edwin Hubble invested a great deal of
effort into measuring the distances to galaxies. By 1929, he had estimated
distances for a sample of 20 galaxies whose value of z had been measured.
Figure 2.4 shows Hubble’s plot of redshift (z) versus distance (r) for these
galaxies. He noted that the more distant galaxies had higher redshifts, and
fitted the data with the famous linear relation now known as Hubble’s law:

(2.8)

where H0 is a constant (now called the Hubble constant). Interpreting the
redshifts as Doppler shifts, Hubble’s law takes the form

(2.9)

Figure 2.4 Edwin Hubble’s original plot of the relation between radial velocity (assuming
the formula v = cz) and distance. [Hubble 1929, PNAS, 15, 168]

Thus, Lemaître’s expansion parameter K, if we assume z ∝ r, can be thought
of as the first measurement of the Hubble constant.



The Hubble constant H0 can be found by dividing velocity by distance, so
it is customarily written in the rather baroque units of km s−1 Mpc−1. When
Hubble first discovered Hubble’s law, he thought that the numerical value of
the
Hubble constant was H0 ≈ 500 km s−1 Mpc−1, as shown in Figure 2.4.
However, it turned out that Hubble was severely underestimating the
distances to individual galaxies, just as Lemaître, who was relying on
techniques pioneered by Hubble, was underestimating the average distance to
nearby galaxies.

Figure 2.5 shows a more recent determination of the Hubble constant from
nearby galaxies, using data obtained using the Hubble Space Telescope.
Notice that galaxies with a radial velocity v = cz ≈ 1000 km s−1, which
Hubble thought were at a distance r ≈ 2 Mpc, are now more accurately placed
at a distance r ≈ 15 Mpc. The best current estimate of the Hubble constant,
combining the results from various research techniques, is

(2.10)

Figure 2.5 A more recent version of Hubble’s plot, showing cz versus distance. In this
case, the galaxy distances have been determined using Cepheid variable stars as standard



candles, as described in Section 6.4. [Freedman et al. 2001, ApJ, 553, 47]

This is the value for the Hubble constant that we will use in the remainder of
this book.

Cosmological innocents sometimes exclaim, when first encountering
Hubble’s law, “Surely it must be a violation of the Copernican principle to
have all those distant galaxies moving away from us! It looks as if we are at a
special location in the universe – the point away from which all other
galaxies are fleeing.” In fact, what we see here in our galaxy is exactly what
you would expect to see in a universe that is undergoing homogeneous and
isotropic expansion. We see distant galaxies moving away from us; but
observers in any other galaxy would also see distant galaxies moving away
from them.

To see on a more mathematical level what we mean by homogeneous,
isotropic expansion, consider three galaxies at positions  and  They
define a triangle (Figure 2.6) with sides of length

(2.11)

(2.12)

(2.13)

Figure 2.6 A triangle defined by three galaxies in a uniformly expanding universe.



Homogeneous and uniform expansion means that the shape of the triangle is
preserved as the galaxies move away from each other. Maintaining the
correct relative lengths for the sides of the triangle requires an expansion law
of the form

(2.14)

(2.15)

(2.16)

Here the function a(t) is a scale factor, equal to one at the present moment (t
= t0) and totally independent of location or direction. The scale factor a(t)
tells us how the expansion (or possibly contraction) of the universe depends
on time. At any time t, an observer in galaxy 1 will see the other galaxies
receding with a speed

(2.17)

(2.18)

An observer in galaxy 2 or galaxy 3 will find the same linear relation
between observed recession speed and distance, with  playing the role of
the Hubble constant. Since this argument can be applied to any trio of
galaxies, it implies that in any universe where the distribution of galaxies is
undergoing homogeneous, isotropic expansion, the velocity–distance relation
takes the linear form v = Hr, with 

If galaxies are currently moving away from each other, then it implies they
were closer together in the past. Consider a pair of galaxies currently
separated by a distance r, with a velocity v = H0r relative to each other. If
there are no forces acting to accelerate or decelerate their relative motion,



then their velocity is constant, and the time that has elapsed since they were
in contact is

(2.19)

independent of the current separation r. The time  is referred to as the
Hubble time. For H0 = 68 ± 2 kms−1 Mpc−1, the Hubble time is 

  If the relative velocities of galaxies have been
constant in the past, then one Hubble time ago, all the galaxies in the universe
were crammed together into a small volume. Thus, the observation of galactic
redshifts led naturally to a Big Bang model for the evolution of the universe.
A Big Bang model may be broadly defined as a model in which the universe
expands from an initially highly dense state to its current low-density state.

The Hubble time of ∼ 14.4 Gyr is comparable to the ages computed for the
oldest known stars in the universe. This rough equivalence is reassuring.
However, the age of the universe – that is, the time elapsed since its original
highly dense state – is not necessarily exactly equal to the Hubble time. We
know that gravity exists, and that galaxies contain matter. If gravity working
on matter is the only force at work on large scales, then the attractive force of
gravity will act to slow the expansion. In this case, the universe was
expanding more rapidly in the past than it is now, and the universe is
somewhat younger than  On the other hand, if the energy density of the
universe is dominated by a cosmological constant (an entity we’ll examine in
more detail in Chapter 4), then the dominant gravitational force is repulsive,
and the universe may be older than 

Just as the Hubble time provides a natural time scale for our expanding
universe, the Hubble distance, c/H0 = 4380 ± 130Mpc, provides a natural
distance scale. The age of the universe is  with the precise age
depending on the expansion history of the universe. Even if a star began
shining very early in the history of the universe, the first light from that star
can only have traveled a distance d ∼ ct0 ∼ c/H0, with the precise travel
distance depending on the expansion history of the universe. The finite age of
the universe thus provides the resolution for Olbers’ paradox: the night sky is
dark because the light from stars at a distance much greater than c/H0 hasn’t



had time to reach us.
In an infinite, eternal universe, as we have seen, you could see an average

distance of λ ∼ 1018 Mpc before your line of sight encountered an opaque star.
In a young universe where light can travel a maximum distance d ∼ c/H0 ∼
4000Mpc, the probability that you see a star along a randomly chosen line of
sight is tiny: it’s of order P ∼ d/λ ∼ 4×10−15. Thus, instead of seeing a sky
completely paved with stars, with surface brightness ∑ ∼ ∑⊙ ∼ 5×10−3 watts
m−2 arcsec−2, you see a sky severely underpaved with stars, with an average
surface brightness3 ∑ ∼ P∑⊙ ∼ 2 × 10−17 watts m−2 arcsec−2. For the night sky
to be completely paved with stars, the universe would have to be over 100
trillion times older than it is; and you’d have to keep the stars shining during
all that time.

Hubble’s law occurs naturally in a Big Bang model for the universe, in
which homogeneous and isotropic expansion causes the density of the
universe to decrease steadily from its initial high value. In a Big Bang model,
the properties of the universe evolve with time; the average density decreases,
the mean distance between galaxies increases, and so forth. However,
Hubble’s law can also be explained by a Steady State model. The Steady
State model was first proposed in the 1940s by Hermann Bondi, Thomas
Gold, and Fred Hoyle, who were proponents of the perfect cosmological
principle, which states that not only are there no privileged locations in
space, there are no privileged moments in time. Thus, a Steady State universe
is one in which the global properties of the universe, such as the mean density
ρ0 and the Hubble constant H0, remain constant with time.

In a Steady State universe, the velocity–distance relation

(2.20)

can be easily integrated, since H0 is constant with time, to yield an
exponential law:

(2.21)



Note that r → 0 only in the limit t → −∞; a Steady State universe is infinitely
old. If there existed an instant in time at which the universe started expanding
(as in a Big Bang model), that would be a special moment, in violation of the
assumed “perfect cosmological principle.” The volume of a spherical region
of space, in a Steady State model, increases exponentially with time:

(2.22)

However, if the universe is in a steady state, the density of the sphere must
remain constant. To have a constant density of matter within a growing
volume, matter must be continuously created at a rate

(2.23)

If our own universe, with matter density ρ0 ≈ 2.7 × 10−27 kg m−3, happened to
be a Steady State universe, then matter would have to be created at a rate

(2.24)

This corresponds to creating roughly one hydrogen atom per cubic kilometer
per year.

During the 1950s and 1960s, the Big Bang and Steady State models
battled for supremacy. Critics of the Steady State model pointed out that the
continuous creation of matter violates mass-energy conservation. Supporters
of the Steady State model pointed out that the continuous creation of matter is
no more absurd than the instantaneous creation of the entire universe in a
single “Big Bang” billions of years ago.4 The Steady State model finally fell
out of favor when observational evidence increasingly indicated that the
perfect cosmological principle is not true. The properties of the universe do,
in fact, change with time. The discovery of the cosmic microwave
background, discussed in Section 2.5, is commonly regarded as the
observation that decisively tipped the scales in favor of the Big Bang model.



2.4 Different Types of Particles
It doesn’t take a brilliant observer to confirm that the universe contains a
variety of different things: shoes, ships, sealing wax, cabbages, kings,
galaxies, and what have you. From a cosmologist’s viewpoint, though,
cabbages and kings are nearly indistinguishable – the main difference
between them is that the mean mass per king is greater than the mean mass
per cabbage. From a cosmological viewpoint, the most significant difference
between the different components of the universe is that they are made of
different elementary particles. The properties of the most cosmologically
important particles are summarized in Table 2.1.

Table 2.1 Elementary particle properties.

Particle Symbol Rest energy (MeV) Charge
Proton p 938.27 +1
Neutron n 939.57 0
Electron e− 0.5110 −1
Neutrino νe, νμ, ντ < 3 × 10−7 0
Photon γ 0 0
Dark matter ? ? 0

The material objects that surround us in our everyday life are made up of
protons, neutrons, and electrons.5 Protons and neutrons are examples of
baryons, where a baryon is defined as a particle made of three quarks. A
proton (p) contains two “up” quarks, each with an electrical charge of +2/3,
and a “down” quark, with charge −1/3. A neutron (n) contains one “up” quark
and two “down” quarks. Thus a proton has a net positive charge of +1, while
a neutron is electrically neutral. Protons and neutrons also differ in their mass
– or equivalently, in their rest energies. The proton mass is mpc2 =
938.27MeV, while the neutron mass is mnc2 = 939.57 MeV, about 0.1%
greater. Free neutrons are unstable, decaying into protons with a decay time
of τn = 880 s, about a quarter of an hour. By contrast, protons are extremely
stable; the lower limit on the decay time of the proton is 
Neutrons can be preserved against decay by binding them into an atomic
nucleus with one or more protons.



Electrons (e−) are examples of leptons, a class of elementary particles that
are not made of quarks. The mass of an electron is much smaller than that of
a neutron or proton; the rest energy of an electron is mec2 = 0.511MeV. An
electron has an electric charge equal in magnitude to that of a proton, but
opposite in sign. On large scales, the universe is electrically neutral; the
number of electrons is equal to the number of protons. Since protons outmass
electrons by a factor of 1836 to 1, the mass density of electrons is only a
small perturbation to the mass density of protons and neutrons. For this
reason, the component of the universe made up of ions, atoms, and molecules
is generally referred to as baryonic matter, since only the baryons (protons
and neutrons) contribute significantly to the mass density. Protons and
neutrons are 800-pound gorillas; electrons are only 7-ounce bushbabies.

About three-fourths of the baryonic matter in the universe is currently in
the form of ordinary hydrogen, the simplest of all elements. In addition, when
we look at the remainder of the baryonic matter, it is primarily in the form of
helium, the next simplest element. When astronomers look at a wide range of
astronomical objects – stars and interstellar gas clouds, for instance – they
find a minimum helium mass fraction of 24%. The baryonic component of
the universe can be described, to lowest order, as a mix of three parts
hydrogen to one part helium, with only minor contamination by heavier
elements.

Another type of lepton, in addition to the electron, is the neutrino (ν). The
most poetic summary of the properties of the neutrino was made by John
Updike, in his poem “Cosmic Gall”:6

Neutrinos, they are very small.
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids down a drafty hall
Or photons through a sheet of glass.

In truth, Updike was using a bit of poetic license here. It is definitely true that
neutrinos have no electric charge. However, it is not true that neutrinos “do
not interact at all”; they actually are able to interact with other particles via
the weak nuclear force. The weak nuclear force, though, is very weak indeed;
a typical neutrino emitted by the Sun would have to pass through a few



parsecs of solid lead before having a 50 percent chance of interacting with a
lead atom. Since neutrinos pass through neutrino detectors with the same
facility with which they pass through the Earth, detecting neutrinos from
astronomical sources is difficult.

There are three types, or “flavors,” of neutrinos: electron neutrinos (νe),
muon neutrinos (νμ), and tau neutrinos (ντ). What Updike didn’t know in
1960, when he wrote his poem, is that each flavor of neutrino has a small
mass. In addition to there being three flavor states of neutrino, (νe, νμ, ντ),
there are also three mass states of neutrino, (ν1, ν2, ν3), with masses m1, m2,
and m3. Each of the three flavor states is a quantum superposition of the three
different mass states. The presence of three neutrino mass states, at least two
of which have a non-zero mass, is known indirectly from the search for
neutrino oscillations. An oscillation is the transmutation of one flavor of
neutrino into another. For instance, an electron neutrino produced by a fusion
reaction in the core of the Sun will be converted into some combination of an
electron neutrino, a muon neutrino, and a tau neutrino as it moves away from
the Sun. These oscillations can only occur, according to the laws of quantum
mechanics, if the different mass states have masses that differ from each
other. The oscillations of electron neutrinos from the Sun are explained if the
two first mass states have  The oscillations of
muon neutrinos created by cosmic rays striking the Earth’s upper atmosphere
are most easily explained if  Unfortunately,
knowing the differences of the squares of the masses doesn’t tell us the
values of the masses themselves. Given m1 ≥ 0, there is a lower limit on the
sum of the neutrino masses:

(2.25)

The best upper limit on the sum of the neutrino masses is given by
observations of the large scale structure of the universe, as we shall see in
Chapter 11. This upper limit is

(2.26)



In any case, although John Updike was not strictly correct about neutrinos
being massless, they are constrained to be very much lower in mass than
electrons.

A particle which is known to be massless is the photon. Electromagnetic
radiation can be thought of either as a wave or as a stream of particles, called
photons. Light, when regarded as a wave, is characterized by its frequency f
or its wavelength λ = c/f. When light is regarded as a stream of photons, each
photon is characterized by its energy, Eγ = hf, where h = 2π ħ is the Planck
constant. Photons of a wide range of energy, from radio to gamma rays,
pervade the universe. Unlike neutrinos, photons interact readily with
electrons, protons, and neutrons. For instance, photons can ionize an atom by
kicking an electron out of its orbit, a process known as photoionization.
Higher-energy photons can break an atomic nucleus apart, a process known
as photodissociation.

Photons, in general, are easily created. One way to make photons is to take
a dense, opaque object – such as the filament of an incandescent lightbulb –
and heat it up. If an object is opaque, then the protons, neutrons, electrons,
and photons that it contains frequently interact, and attain thermal
equilibrium; that is, they all have the same temperature T. The density of
photons in the object, as a function of photon energy, will depend only on T.
It doesn’t matter whether the system is a tungsten filament, an ingot of steel,
or a sphere of ionized hydrogen and helium. The energy density of photons in
the frequency range f → f + df is given by the blackbody function

(2.27)

illustrated in Figure 2.7.



Figure 2.7 The energy density of blackbody radiation, expressed as a function of frequency
f.

The peak in the blackbody function occurs at hfpeak ≈ 2.82kT. Integrated
over all frequencies, Equation 2.27 yields a total energy density for
blackbody radiation of

(2.28)

where

(2.29)

Since the energy of a photon is Eγ = hf, the number density of photons in the
frequency range f → f + df is, from Equation 2.27,

(2.30)



Integrated over all frequencies, the number density of photons in blackbody
radiation is

(2.31)

where

(2.32)

Division of Equation 2.28 by Equation 2.31 yields a mean photon energy
Emean = hfmean ≈ 2.70kT, close to the peak in the spectrum. You have a
temperature Tyou = 310 K, assuming you are not running a fever, and you
radiate an approximate blackbody spectrum, with a mean photon energy
Emean ≈ 0.072 eV, corresponding to a wavelength λ ≈ 1.7 × 10−5 m ≈ 17 000
nm, in the mid-infrared. By contrast, the Sun produces an approximate
blackbody spectrum with a temperature T⊙ ≈ 5800 K. This implies a mean
photon energy Emean ≈ 1.3 eV, corresponding to λ ≈ 9.0 × 10−7 m ≈ 900 nm,
in the near infrared. Note, however, that although the mean photon energy in
a blackbody spectrum is 2.70kT, Figure 2.7 shows us that there is a long
exponential tail to higher photon energies. A large fraction of the Sun’s
output is at wavelengths of 400 → 700 nm, which our eyes are equipped to
detect.

A more mysterious component of the universe is dark matter. When
observational astronomers refer to dark matter, they often mean any massive
component of the universe that is too dim to be detected readily using current
technology. Theoretical astrophysicists often use a more stringent definition
of dark matter than do observers, defining dark matter as any massive
component of the universe which doesn’t emit, absorb, or scatter light at all.7
If neutrinos have mass, for instance, as the neutrino oscillation results
indicate, they qualify as dark matter. In some extensions to the Standard
Model of particle physics, there exist massive particles that interact, like
neutrinos, only through the weak nuclear force and through gravity. These
particles, which have not yet been detected in the laboratory, are generically



referred to as weakly interacting massive particles, or WIMPs.
In this book, we will generally adopt the broader definition of dark matter

as something which is too dim for us to see, even with our best available
technology. Detecting dark matter is, naturally, difficult. The standard
method of detecting dark matter is by measuring its gravitational effect on
luminous matter, just as the planet Neptune was first detected by its
gravitational effect on the planet Uranus. Although Neptune no longer
qualifies as dark matter, observations of the motions of stars within galaxies
and of galaxies within clusters indicate that a significant amount of dark
matter is in the universe. Exactly how much there is, and what it’s made of, is
a topic of great interest to cosmologists.

2.5 Cosmic Microwave Background
The discovery of the cosmic microwave background (CMB) by Arno Penzias
and Robert Wilson in 1965 has entered cosmological folklore. Using a
microwave antenna at Bell Labs, they found an isotropic background of
microwave radiation. More recently, space-based experiments have revealed
that the cosmic microwave background is exquisitely well fitted by a
blackbody spectrum (Equation 2.27) with a temperature

(2.33)

The energy density of the CMB is, from Equation 2.28,

(2.34)

The number density of CMB photons is, from Equation 2.31,

(2.35)

Thus, there are about 411 CMB photons per cubic centimeter of the universe
at the present day. The mean energy of CMB photons, however, is quite low,
only



(2.36)

This is too low in energy to photoionize an atom, much less photodissociate a
nucleus. The mean CMB photon energy corresponds to a wavelength of 2
millimeters, in the microwave region of the electromagnetic spectrum –
hence the name “cosmic microwave background.”

The existence of the CMB is a very important cosmological clue. In
particular, it is the clue that caused the Big Bang model for the universe to be
favored over the Steady State model. In a Steady State universe, the existence
of blackbody radiation at 2.7255 K is not easily explained. In a Big Bang
universe, however, a cosmic background radiation arises naturally if the
universe was initially very hot as well as very dense. If mass is conserved in
an expanding universe, then in the past the universe was denser than it is
now. Assume that the early dense universe was very hot (T ≫ 104 K, or kT
≫ 1 eV). At such high temperatures, the baryonic matter in the universe was
completely ionized, and the free electrons rendered the universe opaque. A
dense, hot, opaque body, as described in Section 2.4, produces blackbody
radiation. So, the early hot dense universe was full of photons, banging off
the electrons like balls in a pinball machine, with a spectrum typical of a
blackbody (Equation 2.27). However, as the universe expanded, it cooled.
Eventually, the temperature became sufficiently low that ions and electrons
combined to form neutral atoms. When the universe no longer contained a
significant number of free electrons, the blackbody photons started streaming
freely through the universe, without further scattering off free electrons.

The blackbody radiation that fills the universe today can be explained as a
relic of the time when the universe was sufficiently hot and dense to be
opaque. However, at the time the universe became transparent, its
temperature was 2970 K. The temperature of the CMB today is 2.7255 K, a
factor of 1090 lower. The drop in temperature of the blackbody radiation is a
direct consequence of the expansion of the universe. Consider a region of
volume V that expands at the same rate as the universe, so that V ∝ a(t)3. The
blackbody radiation in the volume can be thought of as a photon gas with
energy density εγ = αT4. Moreover, since the photons in the volume have
momentum as well as energy, the photon gas has a pressure; the pressure of a
photon gas is Pγ = εγ /3. The photon gas within our imaginary box follows the
laws of thermodynamics; in particular, the boxful of photons obeys the first



law

(2.37)

where dQ is the amount of heat flowing into or out of the photon gas in the
volume V, dE is the change in the internal energy, P is the pressure, and dV is
the change in volume of the box. Since, in a homogeneous universe, there is
no net flow of heat (everything is the same temperature, after all), dQ = 0.
Thus, the first law of thermodynamics, applied to an expanding homogeneous
universe, is

(2.38)

Since, for the photons of the CMB, E = εγ V = αT4V and P = Pγ = αT4/3,
Equation 2.38 can be rewritten in the form

(2.39)

or

(2.40)

However, since V ∝ a(t)3 as the box expands, this means that the rate of
change of the photons’ temperature is related to the rate of expansion of the
universe by the relation

(2.41)

This implies the simple relation T(t) ∝ a(t)−1; the temperature of the cosmic



background radiation has dropped by a factor of 1090 since the universe
became transparent, because the scale factor a(t) has increased by a factor of
1090 since then. What we now see as a cosmic microwave background was
once, at the time the universe became transparent, a cosmic near infrared
background, with a temperature comparable to that of a relatively cool star
like Proxima Centauri.

The evidence cited so far can all be explained within the framework of a
Hot Big Bang model, in which the universe was originally very hot and very
dense, and since then has been expanding and cooling. The remainder of this
book will be devoted to working out the details of the Hot Big Bang model
that best fits the universe in which we live.

Exercises
2.1 Assume you are a perfect blackbody at a temperature of T = 310 K.

What is the rate, in watts, at which you radiate energy? (For the
purposes of this problem, you may assume you are spherical.)

2.2 Since you are made mostly of water, you are very efficient at absorbing
microwave photons. If you were in intergalactic space, how many CMB
photons would you absorb per second? (The assumption that you are
spherical will be useful.) What is the rate, in watts, at which you would
absorb radiative energy from the CMB?

2.3 Suppose that intergalactic space pirates toss you out the airlock of your
spacecraft without a spacesuit. Combining the results of the two
previous questions, at what rate would your temperature change?
(Assume your heat capacity is that of pure water, C = 4200 J kg−1 K−1.)
Would you be most worried about overheating, freezing, or
asphyxiating?

2.4 A hypothesis once used to explain the Hubble relation is the “tired light
hypothesis.” The tired light hypothesis states that the universe is not
expanding, but that photons simply lose energy as they move through
space (by some unexplained means), with the energy loss per unit
distance being given by the law

(2.42)



where k is a constant. Show that this hypothesis gives a distance–
redshift relation that is linear in the limit z ≪ 1. What must the value of
k be in order to yield a Hubble constant of H0 = 68 km s−1 Mpc−1?

2.5 Consider blackbody radiation at a temperature T. Show that for an
energy threshold E0 ≫ kT, the fraction of the blackbody photons that
have energy hf > E0 is

(2.43)

The cosmic background radiation is currently called the “cosmic
microwave background.” However, photons with λ < 1 mm actually lie
in the far infrared range of the electromagnetic spectrum. It’s time for
truth in advertising: what fraction of the photons in today’s “cosmic
microwave back-ground” are actually far infrared photons?

2.6 Show that for an energy threshold E0 ≪ kT, the fraction of blackbody
photons that have energy hf < E0 is

(2.44)

Microwave (and far infrared) photons with a wavelength λ < 3 cm are
strongly absorbed by H2O and O2 molecules. What fraction of the
photons in today’s cosmic microwave background have λ > 3 cm, and
thus are capable of passing through the Earth’s atmosphere and being
detected on the ground?

1 The name “Olbers’ paradox” is thus a prime example of what historians of science
jokingly call the law of misonomy: nothing is ever named after the person who really
discovers it. The law of misonomy is also known as “Stigler’s law,” after a statistician
who admits that he (of course!) didn’t discover it.



2 That’s right, the “Nevermore” guy. Poe was an excellent student at the University of
Virginia (before he fell into debt and withdrew). He was then an excellent student at
West Point (before he was court-martialed and expelled).

3 This crude back-of-envelope calculation doesn’t exactly match the observed surface
brightness of the night sky, but it’s surprisingly close.

4 The name “Big Bang” was actually coined by Fred Hoyle, a supporter of the Steady
State model.

5 For that matter, we ourselves are made of protons, neutrons, and electrons.
6 From TELEPHONE POLES AND OTHER POEMS, by John Updike, ©1958, 1959,

1960, 1961, 1962, 1963 by John Updike. Used by permission of Alfred A. Knopf, an
imprint of the Knopf Doubleday Publishing Group, a division of Penguin Random
House LLC. All rights reserved.

7 Using this definition, an alternate name for dark matter might be “transparent matter” or
“invisible matter.” However, the name “dark matter” is the commonly adopted term.



3

Newton versus Einstein

On cosmological scales (that is, on scales greater than 100 Mpc or so), the
dominant force determining the evolution of the universe is gravity. The
weak and strong nuclear forces are short-range forces; the weak force is
effective only on scales of ℓw ∼ 10−18 m or less, and the strong force on scales
of ℓs ∼ 10−15 m or less. Both gravity and electromagnetism are long-range
forces. On small scales, gravity is negligibly small compared to
electromagnetic forces; for instance, the electrostatic repulsion between a pair
of protons is larger by a factor ∼ 1036 than the gravitational attraction between
them. However, on large scales, the universe is electrically neutral, so there
are no electrostatic forces on large scales. Moreover, intergalactic magnetic
fields are sufficiently small that magnetic forces are also negligibly tiny on
cosmological scales.

In referring to gravity as a force, we are implicitly adopting a Newtonian
viewpoint. In physics, the two useful ways of looking at gravity are the
Newtonian (classical) viewpoint and the Einsteinian (general relativistic)
viewpoint. In Isaac Newton’s view, as formulated by his laws of motion and
law of gravity, gravity is a force that causes massive bodies to be accelerated.
By contrast, in Einstein’s view, gravity is a manifestation of the curvature of
spacetime. Although Newton’s view and Einstein’s view are conceptually
very different, in most contexts they yield the same predictions. The
Newtonian predictions differ significantly from the predictions of general
relativity only in the limit of deep potential minima (to use Newtonian
language) or strong spatial curvature (to use general relativistic language). In
these limits, general relativity yields the correct result.

In the limit of shallow potential minima and weak spatial curvature, it is
permissible to switch back and forth between a Newtonian and a general
relativistic viewpoint, adopting whichever one is more convenient. I will
frequently adopt the Newtonian view of gravity in this book because, in many
contexts, it is mathematically simpler and conceptually more familiar. The



question of why it is possible to switch back and forth between the two very
different viewpoints of Newton and Einstein is an intriguing one, and
deserves closer investigation.

3.1 The Way of Newton
In Newton’s view of the universe, space is unchanging and Euclidean. In
Euclidean space, all the axioms and theorems of plane geometry, as codified
by Euclid in the third century BC, hold true. (Euclidean space is also referred
to as “flat” space. In this context, “flat” doesn’t mean two-dimensional, like a
piece of paper; you can have three-dimensional flat spaces as well as two-
dimensional flat spaces.) In Euclidean space, the shortest distance between
two points is a straight line, the angles at the vertices of a triangle sum to π
radians, the circumference of a circle is 2π times its radius, and so on,
through all the other axioms and theorems you learned in high school
geometry. In Newton’s view, moreover, an object with no net force acting on
it moves in a straight line at constant speed. However, when we look at
objects in the Solar System such as planets, moons, comets, and asteroids, we
find that they move on curved lines, with constantly changing speed. Why is
this? Newton would tell us, “Their velocities are changing because there is a
force acting on them; the force called gravity.”

Newton devised a formula for computing the gravitational force between
two objects. Every object in the universe, said Newton, has a property that we
may call the “gravitational mass.” Let the gravitational masses of two objects
be Mg and mg, and let the distance between their centers be r. The
gravitational force acting between the two objects (assuming they are both
spherical) is

(3.1)

The negative sign in the above equation indicates that gravity, in the
Newtonian view, is always an attractive force, tending to draw two bodies
closer together.

What is the acceleration that results from this gravitational force? Newton



had something to say about that as well. Every object in the universe, said
Newton, has a property that we may call the “inertial mass.” Let the inertial
mass of an object be mi. Newton’s second law of motion says that force and
acceleration are related by the equation

F = mia. (3.2)

In Equations 3.1 and 3.2 we have distinguished, through the use of different
subscripts, between the gravitational mass mg and the inertial mass mi. One of
the fundamental principles of physics is that the gravitational mass and the
inertial mass of an object are identical:

mg = mi. (3.3)

When you stop to think about it, this equality is a remarkable fact. The
property of an object that determines how strongly it is pulled on by the force
of gravity is equal to the property that determines its resistance to
acceleration by any force, not just the force of gravity. The equality of
gravitational mass and inertial mass is called the equivalence principle.

If the equivalence principle did not hold, then the gravitational
acceleration of an object toward a mass Mg would be (combining Equations
3.1 and 3.2)

(3.4)

with the ratio mg/mi varying from object to object. However, when Galileo
dropped objects from towers and slid objects down inclined planes, he found
that the acceleration (barring the effects of air resistance and friction) was
always the same, regardless of the mass and composition of the object. The
magnitude of the gravitational acceleration close to the Earth’s surface is 

 Modern tests of the equivalence principle,
which are basically more sensitive versions of Galileo’s experiments, reveal
that the inertial and gravitational masses are the same to within one part in



1013. For the rest of this book, therefore, we’ll just use the symbol m for
mass, where m = mi = mg.

The equivalence principle implies that at every point  in the universe
there is a unique gravitational acceleration  It is useful to compute this
acceleration in terms of a gravitational potential  If the mass density of
the universe is  then the gravitational potential is given by Poisson’s
equation:

∇2Φ = 4πGρ. (3.5)

If we start with a known density distribution ρ and want to find the associated
potential Φ, it is more useful to use Poisson’s equation in its integral form:

(3.6)

The gravitational acceleration is then 

3.2 The Special Way of Einstein
After the publication of Newton’s Principia Mathematica in 1687, the
immense power of Newtonian physics became apparent to Newton’s
contemporaries. As Alexander Pope wrote shortly after Newton’s death:

Nature and Nature’s law lay hid in night.
God said Let Newton be! and all was light.

Two centuries later, however, the poet John Collings Squire was able to
write:

It did not last: the Devil howling Ho!
Let Einstein be! restored the status quo.

In popular culture, Newton’s laws were regarded as rational and
comprehensible; Einstein’s theories were regarded as esoteric and
incomprehensible. In fact, the theory of special relativity (as first published



by Einstein in 1905) is mathematically rather simple. It’s only when we turn
to general relativity (as published by Einstein in 1915) that the mathematics
becomes more complicated. Let’s start, as a warmup exercise, by considering
special relativity.

Special relativity deals with the special case in which gravity is not
present. In the absence of gravity, space is Euclidean, just as in Newtonian
theory. Suppose we place a particle of mass m in three-dimensional Euclidean
space. It is straightforward to measure the particle’s coordinates (x, y, z)
relative to a set of cartesian coordinate axes, which provide a reference frame
for measuring positions, velocities, and accelerations. The reference frame is
inertial if the motion of a particle, with speed v ≪ c relative to the reference
frame, obeys Newton’s second law of motion,

(3.7)

when the acceleration is measured relative to the reference frame. A rotating
reference frame, for example, is not an inertial frame, since the equation of
motion in a rotating frame contains a Coriolis term and a centrifugal term.
Whether or not a reference frame is inertial can be determined empirically.
Take a particle, apply a known force to it, and measure whether its
acceleration is equal to that predicted by Newton’s second law. (The
necessary caution is that your test is limited by the precision and accuracy
with which you can measure accelerations. Newton, after all, devised his
second law after performing experiments in which accelerations were
measured relative to a frame of reference attached to the rotating Earth. The
resulting Coriolis and centrifugal terms, however, were too small for Newton
to measure.)

Suppose you’ve taken out your accelerometer and have satisfied yourself
that your cartesian reference frame is inertial. Now consider a second
reference frame, moving relative to the first at a constant speed v in the +x
direction, as shown in Figure 3.1. If the first reference frame (let’s call it the
“unprimed” frame) is inertial, the second reference frame (the “primed”
frame) is inertial as well, as long as the relative velocity  of the two frames
is constant.



Figure 3.1 A pair of inertial reference frames (unprimed and primed), moving at a constant
relative velocity 

In Newtonian physics, time is independent of the reference frame in which
it is measured. As Newton himself put it, “Absolute, true, and mathematical
time, of itself, and from its own nature, flows equably without relation to
anything external.” If the origins of the unprimed and primed reference
frames coincide at some time t = t′ = 0, then at some other time t = t′ ≠ 0, the
coordinates in the two frames are related, in Newtonian physics, by the
Galilean transformation:

(3.8)

The Galilean transformation implies that a particle that has a velocity 
measured relative to the unprimed frame has a velocity  relative
to the primed frame.

Newtonian physics and the Galilean transformation were seriously
questioned by Einstein at the beginning of the 20th century. Einstein’s first
postulate of special relativity is:

1st: The equations describing the basic laws of physics are the
same in all inertial frames of reference.

Einstein’s first postulate, on its surface, doesn’t seem very radical. It’s just an



extension of what Galileo said in the 17th century, even before the birth of
Newton. Galileo pointed out that if you were below decks in a sailing ship
with no portholes, there would be no experiment you could conduct that
would enable you to tell whether you were anchored on a placid sea or sailing
along at a constant velocity. Einstein’s key realization, though, was that
Maxwell’s equations, as well as Newton’s laws of motion, are unchanged in a
switch between inertial reference frames. Maxwell’s equations, which
describe the behavior of electric and magnetic fields, imply the existence of
electromagnetic waves traveling through a vacuum at speed c. If Maxwell’s
equations are identical in all inertial frames of reference, as Einstein assumed,
then electromagnetic waves must travel with the identical speed c in all
inertial frames. This realization led Einstein to what is sometimes called the
second postulate of special relativity:

2nd: The speed of light in a vacuum has the same value c in all
inertial frames of reference.

The constancy of the speed of light had been demonstrated by Michelson and
Morley as early as 1887 (although it is unclear whether Einstein was aware of
their results when he published the theory of special relativity in 1905).

Let’s return to the unprimed and primed frames of reference shown in
Figure 3.1. At the instant when the origins of the two frames coincide, we
synchronize the clocks associated with the frames, so that t = t′ = 0. We
celebrate the synchronization by having a lamp located at the joint origin emit
a brief flash of light. If space is empty, then a spherical shell of light expands
outward with speed c, regardless of the frame in which it is observed. At a
later time t > 0, the equation giving the size of the shell in the unprimed
frame is

(3.9)

At the corresponding time t′ in the primed frame,

(3.10)

Equations 3.9 and 3.10 are incompatible with the Galilean transformation, as



you can verify by substitution from Equation 3.8.
Equations 3.9 and 3.10 are, however, compatible with the Lorentz

transformation:1

(3.11)

where γ is the Lorentz factor,

(3.12)

In special relativity, the Lorentz transformation is the correct way to convert
between coordinates in two inertial frames of reference.

To see how the Lorentz transformation disrupts Newtonian ideas about
space and time, consider two events. In the unprimed frame, event 1 occurs at
time t1 at location (x1, y1, z1); event 2 occurs at time t2 at location (x2, y2, z2).
Since space is Euclidean in special relativity, we can easily compute the
spatial distance between the two events in the unprimed frame,

(3.13)

The time elapsed between the two events in the unprimed frame is

(3.14)

We can use the Lorentz transformation to compute the spatial distance
between the two events measured in the primed frame,



(3.15)

The time elapsed between the two events in the primed frame is

(3.16)

Observers in the primed and unprimed frames will measure different spatial
distances between the two events. They will also measure different time
intervals between the two events; under some circumstances, they will even
disagree on which event occurred first. Contrary to Newton’s thinking,
special relativity tells us that there is no “absolute time.” Observers in
different reference frames will measure time differently.

Although observers in different inertial reference frames will disagree on
the spatial distance between two events, and also on the time interval between
the events, there is something that they will agree on: the spacetime
separation between the events. In the unprimed frame, the spacetime
separation between event 1 and event 2 is

(3.17)

or

(3.18)

Notice the choice of signs in this relation: two events have a spacetime
separation Δs = 0 if the light travel time between their spatial locations, Δℓ/c,
is equal to the time that elapses between the events, |Δt|.

The spacetime separation in the primed frame is

(3.19)



where Δℓ′ is given by Equation 3.15 and Δt′ is given by Equation 3.16.
Making the substitutions into Equation 3.19, we find

(3.20)

A little algebraic simplification reveals that

(3.21)

and therefore, comparing Equations 3.17 and 3.21, that (Δs)2 = (Δs′)2.
Using the Galilean transformation, the separation in time between two

events is the same in all inertial frames of reference. Using the Lorentz
transformation, the separation in spacetime is the same in all inertial frames.
In Newtonian physics, it makes sense to think about space and time as two
separate entities; however, in special relativity, it is more useful to think
about a four-dimensional spacetime, with the four-dimensional separation Δs
between two events being given by Equation 3.17.

3.3 The General Way of Einstein
The theory of special relativity has limited usefulness, since it deals only with
the case in which gravity is non-existent. It took Einstein a decade, from 1905
to 1915, to generalize his theory. To see how Einstein was inspired by the
equivalence principle to devise his theory of general relativity, let’s begin
with a thought experiment. Suppose you wake up one morning to find that
you have been sealed up (bed and all) within an opaque, soundproof,
hermetically sealed box. “Oh no!” you say. “This is what I’ve always feared
would happen. I’ve been abducted by space aliens who are taking me away to
their home planet.” Startled by this realization, you drop your teddy bear.
Observing the bear, you find that it falls toward the floor of the box with an
acceleration a = 9.8 ms−2. “Whew!” you say, with some relief. “At least I am
still on the Earth’s surface; they haven’t taken me away in their spaceship



yet.” At that moment, a window in the side of the box opens to reveal (much
to your horror) that you are inside an alien spaceship that is being accelerated
at a = 9.8 ms−2 by a rocket engine.

When you drop a teddy bear, or any other object, within a sealed box
(Figure 3.2), the equivalence principle permits two possible interpretations,
with no way of distinguishing between them:

(1) The box is static, or moving with a constant velocity, and the
bear is being accelerated downward by a gravitational force.

(2) The bear is static, or moving at a constant velocity, and the
box is being accelerated upward by a non-gravitational force.

Figure 3.2 Equivalence principle (teddy bear version). The behavior of a bear in an
accelerated box (left) is identical to that of a bear being accelerated by gravity (right).

The behavior of the bear in each case is identical. In each case, a big bear
falls at the same rate as a little bear; in each case, a bear stuffed with cotton
falls at the same rate as a bear stuffed with lead; and in each case, a sentient



anglophone bear would say, “Oh, bother. I’m weightless,” during the interval
before it collides with the floor of the box.

Einstein’s insight, starting from the equivalence principle, led him to the
theory of general relativity. To understand Einstein’s thought processes,
imagine yourself back in the sealed box, being accelerated through
interplanetary space at 9.8 ms−2. You grab the flashlight that you keep on the
bedside table and shine a beam of light perpendicular to the acceleration
vector (Figure 3.3). Since the box is accelerating upward, the path of the light
beam will appear to you to be bent downward, as the floor of the box rushes
up to meet the photons. However, thanks to the equivalence principle, we can
replace the accelerated box with a stationary box experiencing a constant
gravitational acceleration. Since there’s no way to distinguish between these
two cases, we are led to the conclusion that the paths of photons will be
curved downward in the presence of a gravitational field. Gravity affects
photons, Einstein concluded, even though they have no mass. Contemplating
the curved path of the light beam, Einstein had one more insight. One of the
fundamental principles of optics is Fermat’s principle, which states that light
travels between two points along a path that minimizes the travel time
required. (More generally, Fermat’s principle requires that the travel time be
an extremum – either a minimum or a maximum. In most situations,
however, the path taken by light minimizes the travel time rather than
maximizing it.) In a vacuum, where the speed of light is constant, this
translates into the requirement that light takes the shortest path between two
points. In Euclidean, or flat, space, the shortest path between two points is a
straight line. However, in the presence of gravity, the path taken by light is
not a straight line. Thus, Einstein concluded, space is not Euclidean.



Figure 3.3 Equivalence principle (photon version). The path followed by a light beam in an
accelerated box (left) is identical to the path followed by a light beam being accelerated by
gravity (right). [The deflection shown is greatly exaggerated for the sake of visualization.
The actual deflection will be ∼ 2 × 10−14 m if the box is 2 meters across.]

The presence of mass, in Einstein’s view, causes space to be curved. In
fact, in the fully developed theory of general relativity, mass and energy
(which Newton thought of as two separate entities) are interchangeable, via
the famous equation E = mc2. Moreover, space and time (which Newton
thought of as two separate entities) form a four-dimensional spacetime. A
more accurate summary of Einstein’s viewpoint, therefore, is that the
presence of mass-energy causes spacetime to be curved. We now have a third
way of thinking about the motion of the teddy bear in the box:

(3) No forces are acting on the bear; it is simply following a
geodesic in curved spacetime.

If you take two points in an N-dimensional space or spacetime, a geodesic is
defined as the locally shortest path between them.

We now have two ways of describing how gravity works.



The Way of Newton:
Mass tells gravity how to exert a force (F = −GMm/r2),

Force tells mass how to accelerate (F = ma).

The (General) Way of Einstein:
Mass-energy tells spacetime how to curve,

Curved spacetime tells mass-energy how to move.2

Einstein’s description of gravity gives a natural explanation for the
equivalence principle. In the Newtonian description of gravity, the equality of
the gravitational mass and the inertial mass is a remarkable coincidence.
However, in Einstein’s theory of general relativity, curvature is a property of
spacetime itself. It then follows automatically that the gravitational
acceleration of an object should be independent of mass and composition –
it’s just following a geodesic, which is dictated by the geometry of spacetime.

3.4 Describing Curvature
In developing his theory of general relativity, Einstein faced multiple
challenges. Ultimately, he wanted a mathematical formula (called a field
equation) that relates the curvature of spacetime to its mass-energy density,
similar to the way in which Poisson’s equation relates the gravitational
potential of space to its mass density. En route to this ultimate goal, however,
Einstein needed a way of mathematically describing curvature. Since
picturing the curvature of a four-dimensional spacetime is difficult, let’s start
by considering ways of describing the curvature of two-dimensional spaces,
and then extend what we have learned to higher dimensions.

The simplest of two-dimensional spaces is a plane, as illustrated in Figure
3.4, for which Euclidean geometry holds true. On a plane, a geodesic is a
straight line. If a triangle is constructed on a plane by connecting three points
with geodesics, the angles at its vertices (α, β, and γ in Figure 3.4) obey the
relation

(3.22)

where angles are measured in radians. On a plane, we can set up a cartesian



coordinate system, and assign to every point a coordinate (x, y). On a plane,
the Pythagorean theorem holds, so the distance dℓ between points (x, y) and
(x + dx, y + dy) is given by the relation3

(3.23)

Stating that Equation 3.23 holds true everywhere in two-dimensional space is
equivalent to saying that the space is a plane. Of course, other coordinate
systems can be used in place of cartesian coordinates. For instance, in a polar
coordinate system, the distance between points (r, θ) and (r + dr, θ + dθ) is

(3.24)

Although Equations 3.23 and 3.24 are different in appearance, they both
represent the same flat geometry, as you can verify by making the simple
coordinate substitution x = r cos θ, y = r sin θ.

Figure 3.4 A Euclidean, or flat, two-dimensional space.

Now consider another simple two-dimensional space, the surface of a
sphere (Figure 3.5). On the surface of a sphere, a geodesic is a portion of a
great circle; that is, a circle whose center corresponds to the center of the
sphere. If a triangle is constructed on the surface of a sphere by connecting
three points with geodesics, the angles at its vertices (α, β, and γ) obey the



relation

(3.25)

where A is the area of the triangle, and R is the radius of the sphere. All
spaces in which α + β + γ > π are called positively curved spaces. The surface
of a sphere is a special variety of positively curved space; it has curvature that
is both homogeneous and isotropic. That is, no matter where you draw a
triangle on the surface of a sphere, or how you orient it, it must always satisfy
Equation 3.25, with the radius R being the same everywhere and in all
directions. For brevity, we can describe a space where the curvature is
homogeneous and isotropic as having “uniform curvature.” Thus, the surface
of a sphere can be described as a two-dimensional space with uniform
positive curvature.

Figure 3.5 A positively curved two-dimensional space.

On the surface of a sphere, we can set up a polar coordinate system by
picking a pair of antipodal points to be the “north pole” and “south pole” and
by picking a geodesic from the north to the south pole to be the “prime
meridian.” If r is the distance from the north pole, and θ is the azimuthal
angle measured relative to the prime meridian, then the distance dℓ between a
point (r, θ) and another nearby point (r + dr, θ + dθ) is given by the relation

(3.26)



Note that the surface of a sphere has a finite area, equal to 4πR2, and a
maximum possible distance between points. (In a non-Euclidean space, the
distance between two points is defined as the length of the geodesic
connecting them.) The distance between antipodal points, at the maximum
possible separation, is ℓmax = πR. By contrast, a plane has infinite area, and
has no upper limit on the possible distance between points.4

In addition to flat spaces and positively curved spaces, there exist
negatively curved spaces. An example of a negatively curved two-
dimensional space is the hyperboloid, or saddle shape, shown in Figure 3.6.
For illustrative purposes, it would be useful to show you a surface of uniform
negative curvature, just as the surface of a sphere has uniform positive
curvature. Unfortunately, the mathematician David Hilbert proved that a two-
dimensional surface of uniform negative curvature cannot be constructed in a
three-dimensional Euclidean space. The saddle shape illustrated in Figure 3.6
has uniform curvature only in the central region, near the “seat” of the saddle.

Figure 3.6 A negatively curved two-dimensional space.

Despite the difficulties in visualizing a surface of uniform negative
curvature, its properties can be written down easily. Consider a two-
dimensional surface of uniform negative curvature, with radius of curvature
R. If a triangle is constructed on this surface by connecting three points with
geodesics, the angles at its vertices (α, β, and γ) obey the relation



(3.27)

where A is the area of the triangle.
On a surface of uniform negative curvature, we can set up a polar

coordinate system by choosing some point as the pole, and some geodesic
leading away from the pole as the prime meridian. If r is the distance from
the pole, and θ is the azimuthal angle measured relative to the prime
meridian, then the distance dℓ between a point (r, θ) and a nearby point (r +
dr, θ + dθ) is given by

(3.28)

A surface of uniform negative curvature has infinite area, and has no upper
limit on the possible distance between points.

Relations like those presented in Equations 3.24, 3.26, and 3.28, which
give the distance dℓ between two nearby points in space, are known as
metrics. In general, curvature is a local property. A rubber tablecloth can be
badly rumpled at one end of the table and smooth at the other end; a bagel (or
other toroidal object) is negatively curved on part of its surface and positively
curved on other portions.5 However, if you want a two-dimensional space to
be homogeneous and isotropic, only three possibilities can fit the bill: the
space can be uniformly flat; it can have uniform positive curvature; or it can
have uniform negative curvature. Thus, if a two-dimensional space has
curvature that is homogeneous and isotropic, its geometry can be specified by
two quantities, κ, and R. The number κ, called the curvature constant, is κ = 0
for a flat space, κ = +1 for a positively curved space, and κ = −1 for a
negatively curved space. If the space is curved, then the quantity R, which
has dimensions of length, is the radius of curvature.

The results for two-dimensional space can be extended straightforwardly
to three dimensions. A three-dimensional space, if its curvature is
homogeneous and isotropic, must be flat, or have uniform positive curvature,
or have uniform negative curvature. If a three-dimensional space is flat (κ =
0), it has the metric

(3.29)



expressed in cartesian coordinates, or

(3.30)

expressed in spherical coordinates.
If a three-dimensional space has uniform positive curvature (κ = +1), its

metric is

(3.31)

A positively curved three-dimensional space has finite volume, just as a
positively curved two-dimensional space has finite area. The point at r = πR
is the antipodal point to the origin, just as the south pole is the antipodal point
to the north pole on the surface of a sphere. By traveling a distance C = 2πR,
it is possible to “circumnavigate” a space of uniform positive curvature.

Finally, if a three-dimensional space has uniform negative curvature (κ =
−1), its metric is

(3.32)

Like flat space, negatively curved space has infinite volume.
The three possible metrics for a homogeneous, isotropic, three-

dimensional space can be written more compactly in the form

(3.33)

where

(3.34)

and



(3.35)

In the limit r ≪ R, Sκ ≈ r, regardless of the value of κ. When space is flat, or
negatively curved, Sκ increases monotonically with r, with Sκ → ∞ as r → ∞.
By contrast, when space is positively curved, Sκ increases to a maximum of
Smax = R at r/R = π/2, then decreases again to 0 at r/R = π, the antipodal point
to the origin.

The coordinate system (r, θ, ϕ) is not the only possible system. For
instance, if we switch the radial coordinate from r to x ≡ Sκ (r), the metric for
a homogeneous, isotropic, three-dimensional space can be written in the form

(3.36)

Although the metrics written in Equations 3.33 and 3.36 appear different on
the page, they represent the same homogeneous, isotropic spaces. They
merely have a different functional form because of the different choice of
radial coordinates.

3.5 The Robertson–Walker Metric
So far, we’ve considered the metrics for simple two-dimensional and three-
dimensional spaces. However, relativity teaches us that space and time
together constitute a four-dimensional spacetime. Just as we can compute the
distance between two points in space using the appropriate metric for that
space, so we can compute the four-dimensional separation between two
events in spacetime. Consider two events, one occurring at the spacetime
location (t, r, θ, ϕ), and another occurring at the spacetime location 

 According to the laws of special relativity,
the spacetime separation between these two events is



(3.37)

The metric given in Equation 3.37 is called the Minkowski metric, and the
spacetime that it describes is called Minkowski spacetime. Note, from
comparison with Equation 3.33, that the spatial component of Minkowski
spacetime is Euclidean, or flat.

A photon’s path through spacetime is a four-dimensional geodesic – and
not just any geodesic, mind you, but a special variety called a null geodesic.
A null geodesic is one for which, along every infinitesimal segment of the
photon’s path, ds = 0. In Minkowski spacetime, then, a photon’s trajectory
obeys the relation

(3.38)

If the photon is moving along a radial path, toward or away from the origin,
this means, since θ and ϕ are constant,

(3.39)

or

(3.40)

The Minkowski metric of Equation 3.37 applies only within the context of
special relativity. With no gravity present, Minkowski spacetime is flat and
static. When gravity is added, however, the permissible spacetimes are more
interesting. In the 1930s, the physicists Howard Robertson and Arthur
Walker asked, “What form can the metric of spacetime assume if the universe
is spatially homogeneous and isotropic at all time, and if distances are
allowed to expand or contract as a function of time?” The metric they derived
(independently of each other) is called the Robertson–Walker metric.6 It can
be written in the form



(3.41)

where the function Sκ (r) is given by Equation 3.35, with R = R0. The spatial
component of the Robertson–Walker metric consists of the spatial metric for
a uniformly curved space of radius R0 (compare Equation 3.33), scaled by the
square of the scale factor a(t). The scale factor, first introduced in Section
2.3, describes how distances in a homogeneous, isotropic universe expand or
contract with time.

The time variable t in the Robertson–Walker metric is the cosmological
proper time, called the cosmic time for short, and is the time measured by an
observer who sees the universe expanding uniformly around him or her. The
spatial variables (r, θ, ϕ) are called the comoving coordinates of a point in
space; if the expansion of the universe is perfectly homogeneous and
isotropic, then the comoving coordinates of any point remain constant with
time.

The assumption of homogeneity and isotropy is an extremely powerful
one. If the universe is perfectly homogeneous and isotropic, then everything
we need to know about its geometry is contained within the scale factor a(t),
the curvature constant κ (which can be κ = +1, 0, or −1), and, if κ ≠ 0, the
present-day radius of curvature R0. Much of modern cosmology is devoted in
one way or another to finding the values of a(t), κ, and R0. The assumption of
spatial homogeneity and isotropy is so powerful that it was adopted by
cosmologists such as Einstein, Friedmann, Lemaître, Robertson, and Walker
long before the available observational evidence gave support for such an
assumption.7

The Robertson–Walker metric is an approximation that holds good only
on large scales; on smaller scales, the universe is lumpy, and hence does not
expand uniformly. Small, dense lumps, such as humans, teddy bears, and
interstellar dust grains, are held together by electromagnetic forces, and hence
do not expand. Larger lumps, as long as they are sufficiently dense, are held
together by their own gravity, and hence do not expand. Examples of such
gravitationally bound systems are galaxies (such as the Milky Way Galaxy in
which we live) and clusters of galaxies (such as the Local Group in which we
live). It’s only on scales larger than ∼ 100 Mpc that the expansion of the
universe can be treated as the ideal, homogeneous, isotropic expansion
described by the single scale factor a(t).



3.6 Proper Distance
Consider a galaxy far away from us – sufficiently far away that we may
ignore the small scale perturbations of spacetime and adopt the Robertson–
Walker metric. One question we may ask is, “Exactly how far away is this
galaxy?” In an expanding universe, the distance between two objects is
increasing with time. Thus, if we want to assign a spatial distance d between
two objects, we must specify the time t at which the distance is the correct
one. Suppose that you are at the origin, and that the galaxy that you are
observing is at a comoving coordinate position (r, θ, ϕ), as illustrated in
Figure 3.7. The proper distance dp(t) between two points is equal to the
length of the spatial geodesic between them when the scale factor is fixed at
the value a(t). The proper distance between the observer and galaxy in Figure
3.7 can be found using the Robertson–Walker metric at a fixed time t:

(3.42)

Figure 3.7 An observer at the origin observes a galaxy at coordinate position (r, θ, ϕ). A
photon emitted by the galaxy at cosmic time te reaches the observer at cosmic time t0.

Along the spatial geodesic between the observer and galaxy, the angle (θ,
ϕ) is constant, and thus

(3.43)

The proper distance dp is found by integrating over the radial comoving



coordinate r:

(3.44)

Because the proper distance has the form dp(t) = a(t)r, with the comoving
coordinate r constant with time, the rate of change for the proper distance
between us and a distant galaxy is

(3.45)

Thus, at the current time (t = t0), there is a linear relation between the proper
distance to a galaxy and its recession speed:

(3.46)

where

(3.47)

and

(3.48)

In a sense, this is just a repetition of what was demonstrated in Section 2.3; if
the distance between points is proportional to a(t), there will be a linear
relation between the relative velocity of two points and the distance between
them. Now, however, we are interpreting the change in distance between
widely separated galaxies as being associated with the expansion of space. As
the distance between galaxies increases, the radius of curvature of the
universe, R(t) = a(t)R0, increases at the same rate.



Some cosmology books contain a statement like “As space expands, it
drags galaxies away from each other.” Statements of this sort are somewhat
misleading because they make galaxies appear to be entirely passive. On the
other hand, a statement like “As galaxies move apart, they drag space along
with them” would be equally misleading because it makes space appear to be
entirely passive. As the theory of general relativity points out, spacetime and
mass-energy are intimately linked. Yes, the curvature of spacetime does tell
mass-energy how to move, but then it’s mass-energy which tells spacetime
how to curve.

The linear velocity–distance relation given in Equation 3.46 implies that
points separated by a proper distance greater than the Hubble distance,

(3.49)

will have

(3.50)

Using the observationally determined value of H0 = 68 ± 2 kms−1 Mpc−1, the
current value of the Hubble distance in our universe is

(3.51)

Thus, galaxies farther than ∼ 4400 megaparsecs from us are currently moving
away from us at speeds greater than that of light. Cosmological innocents
sometimes exclaim, “Gosh! Doesn’t this violate the law that massive objects
can’t travel faster than the speed of light?” Actually, it doesn’t. The speed
limit that states that massive objects must travel with v < c relative to each
other is one of the results of special relativity, and refers to the relative
motion of objects within a static space. In the context of general relativity,
there is no objection to having two points moving away from each other at
superluminal speed due to the expansion of space.

When we observe a distant galaxy, we know its angular position very
well, but not its distance. That is, we can point in its direction, but we don’t



know its current proper distance dp(t0). We can, however, measure the
redshift z of the light we receive from the galaxy. Although the redshift
doesn’t tell us the proper distance to the galaxy, it does tell us what the scale
factor a was at the time the light from that galaxy was emitted. To see the
link between a and z, consider the galaxy illustrated in Figure 3.7. Light that
was emitted by the galaxy at a time te is observed by us at a time t0. During
its travel from the distant galaxy to us, the light traveled along a null
geodesic, with ds = 0. The null geodesic has θ and ϕ constant.8 Thus, along
the light’s null geodesic,

(3.52)

Rearranging this relation, we find

(3.53)

In Equation 3.53, the left-hand side is a function only of t, and the right-hand
side is independent of t. Suppose the distant galaxy emits light with a
wavelength λe, as measured by an observer in the emitting galaxy. Fix your
attention on a single wave crest of the emitted light. The wave crest is emitted
at a time te and observed at a time t0, such that

(3.54)

The next wave crest of light is emitted at a time te + λe/c, and is observed at a
time t0 + λ0/c, where, in general, λ0 ≠ λe. For the second wave crest,

(3.55)

Comparing Equations 3.54 and 3.55, we find that



(3.56)

That is, the integral of dt/a(t) between the time of emission and the time of
observation is the same for every wave crest in the emitted light. If we
subtract the integral

(3.57)

from each side of Equation 3.56, we find the relation

(3.58)

That is, the integral of dt/a(t) between the emission of successive wave crests
is equal to the integral of dt/a(t) between the observation of the same two
wave crests. This relation becomes still simpler when we realize that during
the time between the emission or observation of two wave crests, the universe
doesn’t have time to expand by a significant amount. The time scale for
expansion of the universe is the Hubble time,  The time
between wave crests, for visible light, is 
Thus, a(t) is effectively constant in the integrals of Equation 3.58. We may
then write

(3.59)

or

(3.60)



Using the definition of redshift, z = (λ0 −λe)/λe, we find that the redshift of
light from a distant object is related to the expansion factor at the time it was
emitted via the equation

(3.61)

Here, we have used the usual convention that a(t0) = 1.
Thus, if we observe a galaxy with a redshift z = 2, we are observing it as it

was when the universe had a scale factor a(te) = 1/3. The redshift we observe
for a distant object depends only on the relative scale factors at the time of
emission and the time of observation. It doesn’t depend on how the transition
between a(te) and a(t0) was made. It doesn’t matter if the expansion was
gradual or abrupt; it doesn’t matter if the transition was monotonic or
oscillatory. All that matters is the scale factors at the time of emission and the
time of observation.

Exercises
3.1 What evidence can you provide to support the assertion that the universe

is electrically neutral on large scales?
3.2 Suppose you are a two-dimensional being, living on the surface of a

sphere with radius R. An object of width dℓ ≪ R is at a distance r from
you (remember, all distances are measured on the surface of the sphere).
What angular width dθ will you measure for the object? Explain the
behavior of dθ as r → πR.

3.3 Suppose you are still a two-dimensional being, living on the same
sphere of radius R. Show that if you draw a circle of radius r, the circle’s
circumference will be

(3.62)



Idealize the Earth as a perfect sphere of radius R = 6371 km. If you
could measure distances with an error of ±1 meter, how large a circle
would you have to draw on the Earth’s surface to convince yourself that
the Earth is spherical rather than flat?

3.4 Consider an equilateral triangle, with sides of length L, drawn on a two-
dimensional surface of uniform curvature. Can you draw an equilateral
triangle of arbitrarily large area A on a surface with κ = +1 and radius of
curvature R? If not, what is the maximum possible value of A? Can you
draw an equilateral triangle of arbitrarily large area A on a surface with κ
= 0? If not, what is the maximum possible value of A? Can you draw an
equilateral triangle of arbitrarily large area A on a surface with κ = −1
and radius of curvature R? If not, what is the maximum possible value of
A?

3.5 By making the substitutions x = r sin θ cos ϕ, y = r sin θ sin ϕ, and z = r
cos θ, demonstrate that Equations 3.29 and 3.30 represent the same
metric.

1 The Lorentz transformation was first published by Joseph Larmor in 1897; Hendrik
Lorentz didn’t independently find the Lorentz transformation until 1899. (The law of
misonomy strikes again.)

2 This pocket summary of general relativity was coined by the physicist John Wheeler,
who also popularized the term “black hole.”

3 Starting with this equation, I adopt the convention, commonly used among relativists,
that dℓ2 = (dℓ)2, and not d(ℓ2). Omitting the parentheses makes the equations less
cluttered.

4 Since the Syndicate of Cambridge University Press objected to producing a book of
infinite size, Figure 3.4 actually shows only a portion of a plane.

5 You can test this assertion, if you like, by drawing triangles on a bagel.
6 The Robertson–Walker metric is also called the Friedmann–Robertson–Walker (FRW)

metric or the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, depending on
which subset of pioneering cosmologists you want to acknowledge.

7 If homogeneity and isotropy did not exist, as Voltaire might have said, it would be
necessary to invent them – at least if your desire is to have a simple, analytically
tractable form for the metric of spacetime.

8 In a homogeneous, isotropic universe there’s no reason for the light to swerve to one
side or the other.



4

Cosmic Dynamics

The idea that the universe could be curved, or non-Euclidean, long predates
Einstein’s theory of general relativity. As early as 1829, half a century before
Einstein’s birth, Nikolai Ivanovich Lobachevski, one of the founders of non-
Euclidean geometry, proposed observational tests to demonstrate whether the
universe was curved. In principle, measuring the curvature of the universe is
simple; in practice, it is much more difficult. In principle, we could determine
the curvature by drawing a really, really big triangle, and measuring the
angles α, β, and γ at the vertices. Equations 3.22, 3.25, and 3.27 generalize to
the equation

(4.1)

where A is the area of the triangle. Therefore, if α + β + γ > π radians, the
universe is positively curved, and if α + β + γ < π radians, the universe is
negatively curved. If, in addition, we measure the area of the triangle, we can
determine the radius of curvature R0. Unfortunately for this elegant geometric
plan, the area of the biggest triangle we can draw is much smaller than 
and the deviation of α + β + γ from π radians would be too small to measure.

We can conclude from geometric arguments that if the universe is curved,
it can’t have a radius of curvature R0 that is significantly smaller than the
current Hubble distance, c/H0 ≈ 4380 Mpc. To see why, consider a galaxy of
diameter D that is at a distance r from the Earth. In a flat universe, in the limit
D ≪ r, we can use the small angle formula to compute the observed angular
size α of the galaxy:

(4.2)



In a positively curved universe, the angular size is

(4.3)

When r < πR0, then α+ > D/r, and the galaxy appears larger in size than it
would in a flat universe. That is, in a positively curved universe, the
curvature acts as a magnifying lens. Notice that the angular size α+ blows up
at r = πR0; physically, this means that when a galaxy is at a distance
corresponding to half the circumference of the universe, it fills the entire sky.
No such bloated, highly-magnified galaxies are seen, even though we can see
galaxies at distances as great as r ∼ c/H0. Thus, we conclude that if the
universe is positively curved, it must have πR0 > c/H0.

In a negatively curved universe, the observed angular size of the galaxy is

(4.4)

At a distance r ≫ R0, we can use the approximation sinh x ≈ ex/2 to find

(4.5)

In a negatively curved universe, galaxies at a distance much greater than the
radius of curvature R0 appear exponentially tiny in angle. However, in our
universe, galaxies are seen to be resolved in angle out to distances r ∼ c/H0.
Thus, we conclude that if the universe is negatively curved, it must have R0 >
c/H0.

4.1 Einstein’s Field Equation



In the 19th century, mathematicians such as Lobachevski were able to
conceive of curved space. However, it wasn’t until Einstein published his
theory of general relativity in 1915 that anyone related the curvature of space
(and time) to the physical content of the universe. The key equation of
general relativity, which gives the mathematical relation between spacetime
curvature and the energy density and pressure of the universe, is the field
equation.

Einstein’s field equation plays a role in general relativity that is analogous
to the role played by Poisson’s equation in Newtonian dynamics. Poisson’s
equation,

(4.6)

tells you how to compute the gravitational potential Φ, given the mass density
ρ of the material filling the universe. By taking the gradient of Φ, you
determine the acceleration, and can then compute the trajectory of objects
moving freely through space under the influence of gravity. Analogously,
you can use Einstein’s field equation to compute the curvature of spacetime,
given the energy density ε, pressure P, and other properties of the material
filling the universe. You can then compute the trajectory of a freely moving
object by finding the appropriate geodesic in the curved spacetime.

Einstein’s field equation looks simple when it is written down:

(4.7)

The simplicity is deceptive, since the compact notation hides a great deal of
necessary detail. The quantity Gμν on the left-hand side of Equation 4.7 is the
Einstein tensor, which is a 4 × 4 tensor that describes the curvature of
spacetime at every location (t, x, y, z). It is a symmetric tensor, with Gμν =
Gνμ, so it has ten independent components. On the right-hand side of
Equation 4.7, the quantity Tμν is the stress-energy tensor, sometimes called
the energy-momentum tensor; like the Einstein tensor, it is a 4 × 4 symmetric
tensor.

The deceptively simple field equation, Gμν = (8πG/c4)Tμν, is actually a set



of ten nonlinear second-order differential equations. Even without making the
herculean effort to solve them exactly to find the curvature everywhere (and
everywhen) in spacetime, we can make general statements about the
properties of the solution. Since the ten differential equations are second
order, this means that spacetime can have nonzero curvature even in
spacetime neighborhoods where the stress-energy tensor Tμν is zero.
(Analogously, Poisson’s equation is a second-order differential equation, and
gravitational acceleration can be nonzero even in spatial neighborhoods
where the mass density is zero.) Another property of second-order differential
equations involving space and time is that they can yield propagating wave
solutions, in which disturbances propagate through space as a function of
time. Just as a time-varying electric dipole creates electromagnetic waves, a
time-varying mass-energy quadrupole creates gravitational waves.1

In the most general case, the stress-energy tensor Tμν can be very
complicated, and difficult to calculate. However, things become much
simpler if the universe is filled with a homogeneous and isotropic perfect gas.
In that case, an observer who sees the universe expanding uniformly around
her will measure an energy density ε(t) and a pressure P(t) for the ideal gas
that are a function only of cosmic time; the observer will not measure any
bulk velocity  for the gas, since that would break the isotropy. In this
idealized case (which fortunately is a good approximation for our purposes),
the stress-energy tensor Tμν depends only on ε(t) and P(t). The metric
describing the curvature of spacetime, in this case, is the homogeneous and
isotropic Robertson–Walker metric (Equation 3.41):

(4.8)

where

(4.9)

Our remaining goal is to find how a(t), κ, and R0, the parameters that describe
curvature, are linked to ε(t) and P(t), the parameters that describe the contents



of the universe.

4.2 The Friedmann Equation
The equation that links together a(t), κ, R0, and ε(t) is known as the
Friedmann equation, after Alexander Friedmann, the Russian physicist who
first derived the equation in 1922.2 Friedmann actually started his scientific
career as a meteorologist. Later, however, he taught himself general
relativity, and used Einstein’s field equation to describe how a spatially
homogeneous and isotropic universe expands or contracts as a function of
time. Friedmann published his first results, implying expanding or
contracting space, five years before Lemaître interpreted the observed galaxy
redshifts in terms of an expanding universe, and seven years before Hubble
published Hubble’s law.

Friedmann derived his eponymous equation starting from Einstein’s field
equation, using the full power of general relativity. Even without bringing
relativity into play, some (though not all) of the aspects of the Friedmann
equation can be understood with the use of purely Newtonian dynamics. To
see how the expansion or contraction of the universe can be viewed from a
Newtonian viewpoint, I will first derive the nonrelativistic equivalent of the
Friedmann equation, starting from Newton’s law of gravity and second law
of motion. Then I will state (without proof) the modifications that must be
made to find the more correct, general relativistic form of the Friedmann
equation.

To begin, consider a homogeneous sphere of matter, with total mass Ms
constant with time (Figure 4.1). The sphere is expanding or contracting
isotropically, so that its radius Rs(t) is increasing or decreasing with time.
Place a test mass, of infinitesimal mass m, at the surface of the sphere. The
gravitational force F experienced by the test mass will be, from Newton’s law
of gravity,

(4.10)

The gravitational acceleration at the surface of the sphere will then be, from



Newton’s second law of motion,

(4.11)

Figure 4.1 A sphere of radius Rs(t) and mass Ms, expanding or contracting under its own
gravity.

Multiply each side of the equation by dRs/dt and integrate to find

(4.12)

where U is a constant of integration. Equation 4.12 simply states that the sum
of the kinetic energy per unit mass,

(4.13)

and the gravitational potential energy per unit mass,

(4.14)



is constant for a bit of matter at the surface of a sphere, as the sphere expands
or contracts under its own gravitational influence.

Since the mass of the sphere is constant, we may write

(4.15)

Since the expansion or contraction is isotropic about the sphere’s center, we
may write the radius Rs(t) in the form

(4.16)

where a(t) is the scale factor and rs is the comoving radius of the sphere. In
terms of ρ(t) and a(t), the energy conservation Equation 4.12 can be rewritten
in the form

(4.17)

Dividing each side of Equation 4.17 by  yields the equation

(4.18)

Equation 4.18 gives the Friedmann equation in its Newtonian form.
Note that the time derivative of the scale factor only enters into Equation

4.18 as  a contracting sphere  is simply the time reversal of an
expanding sphere  Let’s concentrate on the case of an expanding
sphere, analogous to the expanding universe in which we find ourselves. The
future of the expanding sphere falls into one of three classes, depending on
the sign of U. First, consider the case U > 0. In this case, the right-hand side
of Equation 4.18 is always positive. Therefore,  is always positive, and the
expansion of the sphere never stops. Second, consider the case U < 0. In this
case, the right-hand side of Equation 4.18 starts out positive. However, at a



maximum scale factor

(4.19)

the right-hand side will equal zero, and expansion will stop. Since  will still
be negative, the sphere will then contract. Third, and finally, consider the
case U = 0. This is the boundary case in which  as t → ∞ and ρ → 0.

The three possible fates of an expanding sphere in a Newtonian universe
are analogous to the three possible fates of a ball thrown upward from the
surface of the Earth. First, the ball can be thrown upward with a speed greater
than the escape speed; in this case, the ball continues to go upward forever.
Second, the ball can be thrown upward with a speed less than the escape
speed; in this case, the ball reaches a maximum altitude, then falls back
down. Third, and finally, the ball can be thrown upward with a speed exactly
equal to the escape speed; in this case, the speed of the ball approaches zero
as t → ∞.

The Friedmann equation in its Newtonian form (Equation 4.18) is useful
in picturing how isotropically expanding objects behave under the influence
of their self-gravity. However, its application to the real universe must be
regarded with considerable skepticism. First of all, a spherical volume of
finite radius Rs cannot represent a homogeneous, isotropic universe. In a
finite spherical volume, there exists a special location (the center of the
sphere), violating the assumption of homogeneity, and at any point there
exists a special direction (the direction pointing toward the center), violating
the assumption of isotropy. What if we instead regard the sphere of radius Rs
as being carved out of an infinite, homogeneous, isotropic universe? In that
case, Newtonian dynamics tell us that the gravitational acceleration inside a
hollow spherically symmetric shell is equal to zero. We divide up the region
outside the sphere into concentric shells, and thus conclude that the test mass
m at Rs experiences no net acceleration from matter at R > Rs. Unfortunately,
a Newtonian argument of this sort assumes that space is perfectly Euclidean,
an assumption that we can’t necessarily make in the real universe. A
derivation of the correct Friedmann equation has to begin, as Friedmann
himself began, with Einstein’s field equation.

The correct form of the Friedmann equation, including all general



relativistic effects, is

(4.20)

Note the changes made in going from the Newtonian form of the Friedmann
equation (Equation 4.18) to the correct relativistic form (Equation 4.20). The
first change is that the mass density ρ has been replaced by an energy density
ε divided by the square of the speed of light. One of Einstein’s insights was
that in determining the gravitational influence of a particle, the important
quantity was not its mass m but its energy,

(4.21)

Here p is the momentum of the particle, as measured by an observer at the
particle’s location who sees the universe expanding isotropically. Any motion
that a particle has, in addition to the motion associated with the expansion or
contraction of the universe, is called the particle’s peculiar motion.3 If a
massive particle is nonrelativistic, with a peculiar velocity v ≪ c, then its
peculiar momentum will be p ≈ mv and its energy will be

(4.22)

Thus, if the universe contained only massive, slowly moving particles, then
the energy density ε would be nearly equal to ρc2, with only a small
correction for the kinetic energy mv2/2 of the particles. However, photons and
other massless particles also have an energy,

(4.23)

which contributes to the energy density ε. Not only do photons respond to the
curvature of spacetime, they also contribute to it.

The second change that must be made in going from the Newtonian form



of the Friedmann equation to the correct relativistic form is making the
substitution

(4.24)

The Newtonian case with U < 0 corresponds to the relativistic case with
positive curvature (κ = +1); conversely, U > 0 corresponds to negative
curvature (κ = −1). The Newtonian special case with U = 0 corresponds to the
relativistic special case where the space is perfectly flat (κ = 0). Although I
have not given the derivation of the Friedmann equation in the general
relativistic case, it makes sense that the curvature, given by κ and R0, the
expansion rate, given by a(t), and the energy density ε should be bound up
together in the same equation. After all, in Einstein’s view, the energy density
of the universe determines both the curvature of space and the overall
dynamics of the expansion.

The Friedmann equation is a Very Important Equation in cosmology.4
However, if we want to apply the Friedmann equation to the real universe, we
must have some way of tying it to observable properties. For instance, the
Friedmann equation can be tied to the Hubble constant, H0. Remember, in a
universe whose expansion (or contraction) is described by a scale factor a(t),
there’s a linear relation between recession speed v and proper distance d:

(4.25)

where  Thus, the Friedmann equation can be rewritten in the form

(4.26)

At the present moment,



(4.27)

(As an aside, the time-varying function H(t) is generally known as the
“Hubble parameter,” while H0, the value of H(t) at the present day, is known
as the “Hubble constant.”) The Friedmann equation evaluated at the present
moment is

(4.28)

using the convention that a subscript “0” indicates the value of a time-varying
quantity evaluated at the present. Thus, the Friedmann equation gives a
relation between the Hubble parameter H0, which tells us the current rate of
expansion, ε0, which tells us the current energy density, and  which tells
us the current curvature.

In a spatially flat universe (κ = 0), the Friedmann equation takes a
particularly simple form:

(4.29)

Thus, for a given value of the Hubble parameter, there is a critical density,

(4.30)

If the energy density ε(t) is greater than this value, the universe is positively
curved (κ = +1). If ε(t) is less than this value, the universe is negatively
curved (κ = −1). Knowing the Hubble constant to within about 3%, we can
compute the current value of the critical density to within about 6%:

(4.31)



The critical density is frequently written as the equivalent mass density,

(4.32)

The current critical density is roughly equivalent to a density of one proton
per 200 liters. This is definitely not a large density, by terrestrial standards; a
200-liter drum filled with liquid water, for instance, contains ∼ 1029 protons
and neutrons. The critical density is not even a large density by the standards
of interstellar space within our galaxy; even the hottest, most tenuous regions
of the interstellar medium have a few protons per liter. However, keep in
mind that most of the volume of the universe consists of intergalactic voids,
where the density is extraordinarily low. When averaged over scales of 100
Mpc or more, the mean energy density of the universe, as it turns out, is very
close to the critical density.

When discussing the curvature of the universe, it is useful to talk about the
energy density in terms of the dimensionless density parameter

(4.33)

The current value of the density parameter, determined from a combination of
observational data, lies in the range 0.995 < Ω0 < 1.005. Written in terms of
the density parameter Ω, the Friedmann equation becomes

(4.34)

Note that, since the right-hand side of Equation 4.34 cannot change sign as
the universe expands, neither can the left-hand side. If Ω < 1 at any time, it



remains less than one for all time; similarly, if Ω > 1 at any time, it remains
greater than one for all time, and if Ω = 1 at any time, Ω = 1 at all times. At
the present moment, the relation between curvature, density, and expansion
rate can be written in the form

(4.35)

or

(4.36)

If you know Ω0, you know the sign of the curvature (κ). If, in addition, you
know the Hubble distance, c/H0, you can compute the radius of curvature
(R0).

4.3 The Fluid and Acceleration Equations
Although the Friedmann equation is indeed important, it cannot, all by itself,
tell us how the scale factor a(t) evolves with time. Even if we had accurate
boundary conditions (precise values for ε0 and H0, for instance), it still
remains a single equation in two unknowns, a(t) and ε(t).

We need another equation involving a and ε if we are to solve for a and ε
as functions of time. The Friedmann equation, in the Newtonian
approximation, is a statement of energy conservation; in particular, it says
that the sum of the gravitational potential energy and the kinetic energy of
expansion is constant. Energy conservation is a generally useful concept in
Newtonian physics, so let’s look at another manifestation of the same concept
– the first law of thermodynamics:

(4.37)



where dQ is the heat flow into or out of a volume, dE is the change in internal
energy, P is the pressure, and dV is the change in volume. This equation was
applied in Section 2.5 to a comoving volume filled with photons, but it
applies equally well to a comoving volume filled with any sort of fluid. If the
universe is perfectly homogeneous, then for any volume dQ = 0; that is, there
is no bulk flow of heat.

Processes for which dQ = 0 are known as adiabatic processes. The term
“adiabatic” comes from the Greek word adiabatos, meaning “not to be
passed through,” referring to the fact that heat does not pass through the
boundary of the volume.5 Saying that the expansion of the universe is
adiabatic is also a statement about entropy. The change in entropy dS within a
region is given by the relation dS = dQ/T; thus, an adiabatic process is one in
which entropy is not increased. A homogeneous, isotropic expansion of the
universe does not increase the universe’s entropy.

Since dQ = 0 for a comoving volume as the universe expands, the first law
of thermodynamics, as applied to the expanding universe, reduces to the form

(4.38)

For concreteness, consider a sphere of comoving radius rs expanding along
with the universal expansion, so that its proper radius is Rs(t) = a(t)rs. The
volume of the sphere is

(4.39)

so the rate of change of the sphere’s volume is

(4.40)

The internal energy of the sphere is

(4.41)



so the rate of change of the sphere’s internal energy is

(4.42)

Combining Equations 4.38, 4.40, and 4.42, we find that the first law of
thermodynamics in an expanding (or contracting) universe takes the form

(4.43)

or

(4.44)

This equation is called the fluid equation, and is the second of the key
equations describing the expansion of the universe.6 Unlike the Friedmann
equation, whose relativistic form is different from its Newtonian form, the
fluid equation is unchanged by the switch from Newtonian physics to general
relativity.

The Friedmann equation and fluid equation can be combined into an
acceleration equation that tells how the universe speeds up or slows down
with time. The Friedmann equation (Equation 4.20), multiplied by a2, takes
the form

(4.45)

Taking the time derivative yields



(4.46)

Dividing by  tells us

(4.47)

Using the fluid equation (Equation 4.44), we may make the substitution

(4.48)

to find the usual form of the acceleration equation,

(4.49)

If the energy density ε is positive, then it provides a negative acceleration –
that is, it decreases the value of ȧ and reduces the relative velocity of any two
points in the universe. The acceleration equation also includes the pressure P
associated with the material filling the universe.7

A gas made of ordinary baryonic matter has a positive pressure P,
resulting from the random thermal motions of the molecules, atoms, or ions
of which the gas is made. A gas of photons also has a positive pressure, as
does a gas of neutrinos or WIMPs. The positive pressure associated with
these components of the universe will cause the expansion to slow down.
Suppose, though, that the universe had a component with ε > 0 and

(4.50)

Inspection of the acceleration equation (Equation 4.49) shows us that such a
component will cause the expansion of the universe to speed up rather than



slow down.

4.4 Equations of State
To recap, we now have three key equations that describe how the universe
expands. There’s the Friedmann equation,

(4.51)

the fluid equation,

(4.52)

and the acceleration equation,

(4.53)

Of these three equations, only two are independent, because Equation 4.53, as
we’ve just seen, can be derived from Equations 4.51 and 4.52. Thus, we have
a system of two independent equations in three unknowns – the functions
a(t), ε(t), and P(t). To solve for the scale factor, energy density, and pressure
as a function of cosmic time, we need another equation. What we need is an
equation of state; that is, a mathematical relation between the pressure and
energy density of the stuff that fills up the universe. If only we had a relation
of the form

P = P(ε), (4.54)

life would be complete – or at least, our set of equations would be complete.
We could then, given the appropriate boundary conditions, solve them to find



how the universe expanded in the past, and how it will expand (or contract) in
the future.

In general, equations of state can be dauntingly complicated. Condensed
matter physicists frequently deal with substances in which the pressure is a
complicated nonlinear function of the density. Fortunately, cosmology
usually deals with dilute gases, for which the equation of state is simple. For
substances of cosmological importance, the equation of state can be written
in a simple linear form:

P = wε, (4.55)

where w is a dimensionless number.
Consider, for instance, a low-density gas of nonrelativistic massive

particles. Nonrelativistic, in this case, means that the random thermal motions
of the gas particles have peculiar velocities which are tiny compared to the
speed of light. Such a nonrelativistic gas obeys the perfect gas law,

(4.56)

where μ is the mean mass of the gas particles. The energy density ε of a
nonrelativistic gas is almost entirely contributed by the mass of the gas
particles: ε ≈ ρc2. Thus, in terms of ε, the perfect gas law is

(4.57)

For a nonrelativistic gas, the temperature T and the root mean square thermal
velocity 〈v2〉 are associated by the relation

(4.58)

Thus, the equation of state for a nonrelativistic gas can be written in the form



(4.59)

where

(4.60)

Most of the gases we encounter in everyday life are nonrelativistic. For
instance, in air at room temperature, nitrogen molecules are slow-poking
along with a root mean square velocity of ∼ 500 m s−1, yielding w ∼ 10−12.
Even in astronomical contexts, gases are mainly nonrelativistic at the present
moment. Within a gas of ionized hydrogen, for instance, the electrons are
nonrelativistic as long as T ≪ 6 × 109 K; the protons are nonrelativistic when
T ≪ 1013 K.

A gas of photons, or other massless particles, is guaranteed to be
relativistic. Although photons have no mass, they have momentum, and
hence exert pressure. The equation of state of photons, or of any other
relativistic gas, is

(4.61)

(This relation has already been used in Section 2.5, to compute how the
cosmic microwave background cools as the universe expands.) A gas of
highly relativistic massive particles (with 〈v2〉 ∼ c2) will also have w = 1/3; a
gas of mildly relativistic particles (with 0 < 〈v2〉 < c2) will have 0 < w < 1/3.

Some values of w are of particular interest. For instance, the case w = 0 is
of interest, because we know that our universe contains nonrelativistic matter.
The case w = 1/3 is of interest, because we know that our universe contains
photons. For simplicity, we will refer to the component of the universe that
consists of nonrelativistic particles (and hence has w ≈ 0) as “matter,” and the
component that consists of photons and other relativistic particles (and hence
has w = 1/3) as “radiation.” The case w < −1/3 is of interest, because a
component with w < −1/3 provides a positive acceleration  in
Equation 4.53). A component of the universe with w < −1/3 is referred to



generically as “dark energy” (a phrase coined by the cosmologist Michael
Turner). One form of dark energy is of special interest; observational
evidence, which we’ll review in future chapters, indicates that our universe
may contain a cosmological constant. A cosmological constant may be
defined simply as a component of the universe that has w = −1, and hence has
P = −ε. The cosmological constant, also designated by the Greek letter Λ, has
had a controversial history. To learn why cosmologists have had such a long-
standing love/hate affair with the cosmological constant Λ, it is necessary to
make a brief historical review.

4.5 Learning to Love Lambda
The cosmological constant Λ was first introduced by Albert Einstein. After
publishing his first paper on general relativity in 1915, Einstein, naturally
enough, wanted to apply his field equation to the real universe. He looked
around, and noted that the universe contains both radiation and matter. Since
Einstein, along with every other earthling of his time, was unaware of the
existence of the cosmic microwave background, he thought that most of the
radiation in the universe was in the form of starlight. He also noted, quite
correctly, that the energy density of starlight in our galaxy is much less than
the rest energy density of the stars. Thus, Einstein concluded that the primary
contribution to the energy density of the universe was from nonrelativistic
matter, and that he could safely make the approximation that we live in a
pressureless universe.

So far, Einstein was on the right track. However, in 1915, astronomers
were unaware of the existence of the expansion of the universe. In fact, it was
by no means settled that galaxies besides our own actually existed. After all,
the sky is full of faint fuzzy patches of light. It took some time to sort out that
some of the faint fuzzy patches are glowing clouds of gas within our galaxy
and that some of them are galaxies in their own right, far beyond our own
galaxy. Thus, when Einstein asked, “Is the universe expanding or
contracting?” he looked, not at the motions of galaxies, but at the motions of
stars within our galaxy. Einstein noted that some stars are moving toward us
and that others are moving away from us, with no evidence that the galaxy is
expanding or contracting.

The incomplete evidence available to Einstein led him to the belief that



the universe is static – neither expanding nor contracting – and that it has a
positive energy density but negligible pressure. Einstein then had to ask the
question, “Can a universe filled with nonrelativistic matter, and nothing else,
be static?” The answer to this question is “No!” A universe containing
nothing but matter must, in general, be either expanding or contracting. The
reason why this is true can be illustrated in a Newtonian context. If the mass
density of the universe is ρ, then the gravitational potential Φ is given by
Poisson’s equation:

(4.62)

The gravitational acceleration  at any point in space is then found by taking
the gradient of the potential:

(4.63)

In a permanently static universe,  must vanish everywhere, implying the
potential Φ must be constant in space. However, if Φ is constant, then (from
Equation 4.62)

(4.64)

The only permissible static universe, in this analysis, is a totally empty
universe. If you create a matter-filled universe that is initially static, then
gravity will cause it to contract. If you create a matter-filled universe that is
initially expanding, then it will either expand forever (if the Newtonian
energy U is greater than or equal to zero) or reach a maximum radius and
then collapse (if U < 0). Trying to make a matter-filled universe that doesn’t
expand or collapse is like throwing a ball into the air and expecting it to
hover there.

How did Einstein surmount this problem? How did he reconcile the fact
that the universe contains matter with his desire for a static universe?
Basically, he added a fudge factor to the equations. In Newtonian terms, what
he did was analogous to rewriting Poisson’s equation in the form



(4.65)

The new term, symbolized by the Greek letter Λ, came to be known as the
cosmological constant. Introducing Λ into Poisson’s equation allows the
universe to be static if you set Λ = 4πGρ.

In general relativistic terms, what Einstein did was to add an additional
term, involving Λ, to his field equation. If the Friedmann equation is re-
derived from Einstein’s field equation, with the Λ term added, it becomes

(4.66)

The fluid equation is unaffected by the presence of a Λ term, so it still has the
form

(4.67)

With the Λ term present, the acceleration equation becomes

(4.68)

A look at the Friedmann equation (Equation 4.66) tells us that adding the Λ
term is equivalent to adding a new component to the universe with energy
density

(4.69)

If Λ remains constant with time, then so does its associated energy density
εΛ. The fluid equation (Equation 4.67) tells us that to have εΛ constant with
time, the Λ term must have an associated pressure



(4.70)

Thus, we can think of the cosmological constant as a component of the
universe, which has a constant density εΛ and a constant pressure PΛ = −εΛ.

By introducing a Λ term into his equations, Einstein got the static model
universe he wanted. For the universe to remain static, both ȧ and ä must be
equal to zero. If ä = 0, then in a universe with matter density ρ and
cosmological constant Λ, the acceleration equation (Equation 4.68) reduces
to

(4.71)

Thus, Einstein had to set Λ = 4πGρ in order to produce a static universe, just
as in the Newtonian case. If ȧ = 0, the Friedmann equation (Equation 4.66)
reduces to

(4.72)

Einstein’s static model therefore had to be positively curved (κ = +1), with a
radius of curvature

(4.73)

Although Einstein published the details of his static, positively curved,
matter-filled model in 1917, he was dissatisfied with the model. He believed
that the cosmological constant was “gravely detrimental to the formal beauty
of the theory.” In addition to its aesthetic shortcomings, the model had a
practical defect; it was unstable. Although Einstein’s static model was in
equilibrium, with the repulsive force of Λ balancing the attractive force of ρ,
it was an unstable equilibrium. Consider expanding Einstein’s universe just a



tiny bit. The energy density of Λ remains unchanged, but the energy density
of matter drops. Thus, the repulsive force is greater than the attractive force,
and the universe expands further. This causes the matter density to drop
further, which causes the expansion to accelerate, which causes the matter
density to drop further, and so forth. Expanding Einstein’s static universe
triggers runaway expansion; similarly, compressing it causes a runaway
collapse.

Einstein was willing, even eager, to dispose of the “ugly” cosmological
constant in his equations. Hubble’s 1929 paper on the redshift–distance
relation gave Einstein the necessary excuse for tossing Λ onto the rubbish
heap.8 Ironically, however, the same paper that caused Einstein to abandon
the cosmological constant caused other scientists to embrace it. In his initial
analysis, Hubble underestimated the distance to galaxies, and hence
overestimated the Hubble constant. Hubble’s initial value of H0 = 500 km s−1

Mpc−1 leads to a Hubble time  However, by the year 1929, the
technique of radiometric dating, as pioneered by the geologist Arthur
Holmes, was indicating that the Earth was ∼ 3 Gyr old. How could
cosmologists reconcile a short Hubble time with an old Earth? Some
cosmologists pointed out that one way to increase the age of the universe for
a given value of  was to introduce a cosmological constant. If the value of
Λ is large enough to make  then  was smaller in the past than it is
now, and consequently the universe is older than 

If Λ has a value greater than 4πGρ0, then the expansion of the universe is
accelerating, and the universe can be arbitrarily old for a given value of 
Since 1917, the cosmological constant has gone in and out of fashion, like
sideburns or short skirts. It has been particularly fashionable during periods
when the favored value of the Hubble time  has been embarrassingly
short compared to the estimated ages of astronomical objects. Currently, the
cosmological constant is popular, thanks to observations (discussed in
Section 6.5) indicating that the expansion of the universe has a positive
acceleration.

A question that has been asked since the time of Einstein – and one which
we’ve assiduously dodged until this moment – is “What is the physical cause
of the cosmological constant?” In order to give Λ a physical meaning, we
need to identify some component of the universe whose energy density εΛ
remains constant as the universe expands or contracts. Currently, a leading



candidate for this component is the vacuum energy.
In classical physics, the idea of a vacuum having energy is nonsense. A

vacuum, from the classical viewpoint, contains nothing; and as King Lear
would say, “Nothing can come of nothing.” In quantum physics, however, a
vacuum is not a sterile void. The Heisenberg uncertainty principle permits
particle– antiparticle pairs to spontaneously appear and then annihilate in an
otherwise empty vacuum. The total energy Δ E and the lifetime Δ t of these
pairs of virtual particles must satisfy the relation9

(4.74)

Just as there’s an energy density associated with the real particles in the
universe, there is an energy density εvac associated with the virtual particle–
antiparticle pairs. The vacuum density εvac is a quantum phenomenon that
doesn’t give a hoot about the expansion of the universe and is independent of
time as the universe expands or contracts.

Unfortunately, computing the numerical value of εvac is an exercise in
quantum field theory that has not yet been successfully completed. It has
been suggested that the natural value for the vacuum energy density is the
Planck energy density,

(4.75)

As we’ve seen in Chapter 1, the Planck energy is large by particle physics
standards (EP = 1.22 × 1028 eV = 540 kilowatt-hours), while the Planck
length is small by anybody’s standards (ℓP = 1.62 × 10−35 m). This gives an
energy density

(4.76)

This is 123 orders of magnitude larger than the current critical density for our
universe, and represents a spectacularly bad match between theory and
observations. Obviously, we don’t know much yet about the energy density



of the vacuum! This is a situation where astronomers can help particle
physicists, by deducing the value of εΛ from observations of the expansion of
the universe. By looking at the universe at extremely large scales, we are
indirectly examining the structure of the vacuum on extremely small scales.

Exercises
4.1 Suppose the energy density of the cosmological constant is equal to the

present critical density εΛ = εc,0 = 4870 MeVm−3. What is the total
energy of the cosmological constant within a sphere 1 AU in radius?
What is the rest energy of the Sun  Comparing these two
numbers, do you expect the cosmological constant to have a significant
effect on the motion of planets within the solar system?

4.2 Consider Einstein’s static universe, in which the attractive force of the
matter density ρ is exactly balanced by the repulsive force of the
cosmological constant, Λ = 4πGρ. Suppose that some of the matter is
converted into radiation (by stars, for instance). Will the universe start to
expand or contract? Explain your answer.

4.3 If ρ = 2.7 × 10−27 kg m−3, what is the radius of curvature R0 of
Einstein’s static universe? How long would it take a photon to
circumnavigate such a universe?

4.4 Suppose that the universe were full of regulation baseballs, each of mass
mbb = 0.145 kg and radius rbb = 0.0369 m. If the baseballs were
distributed uniformly throughout the universe, what number density of
baseballs would be required to make the density equal to the critical
density? (Assume nonrelativistic baseballs.) Given this density of
baseballs, how far would you be able to see, on average, before your line
of sight intersected a baseball? In fact, we can see galaxies at a distance
∼ c/H0 ∼ 4000 Mpc; does the transparency of the universe on this length
scale place useful limits on the number density of intergalactic
baseballs? (Note to readers outside North America or Japan: feel free to
substitute regulation cricket balls, with mcr = 0.160 kg and rcr = 0.0360
m.)

4.5 The principle of wave-particle duality tells us that a particle with



momentum p has an associated de Broglie wavelength of λ = h/p; this
wavelength increases as λ ∝ a as the universe expands. The total energy
density of a gas of particles can be written as ε = nE, where n is the
number density of particles, and E is the energy per particle. For
simplicity, let’s assume that all the gas particles have the same mass m
and momentum p. The energy per particle is then simply

(4.77)

Compute the equation-of-state parameter w for this gas as a function of
the scale factor a. Show that w = 1/3 in the highly relativistic limit (a →
0, p → ∞) and that w = 0 in the highly nonrelativistic limit (a → ∞, p →
0).

1 Einstein predicted the existence of gravitational waves in 1916. He then “un-predicted”
them in 1936, when he erroneously thought they were a byproduct of the
approximations he had made in 1916. In the 1950s, however, physicists “re-predicted”
the existence of gravitational waves, which were finally detected by the Laser
Interferometry Gravitational-wave Observatory on 14 Sept. 2015, just in time for the
centenary of Einstein’s prediction.

2 Using the Library of Congress transliteration system for Cyrillic, his name would be
“Aleksandr Fridman.” However, in the German scientific journals where he published
his main results, he alternated between the spellings “Friedman” and “Friedmann” for
his last name. The two-n spelling is more popular among historians of science.

3 The adjective “peculiar” comes from the Latin word peculium, meaning “private
property.” The peculiar motion of a particle is thus the motion that belongs to the
particle alone, and not to the global expansion or contraction of the universe.

4 You should consider writing it in reverse on your forehead so that you can see it every
morning in the mirror when you comb your hair.

5 The word “adiabatic” is thus etymologically related to “diabetes,” a word that refers to
the quick passage of liquids through the human body, creating the increased thirst and
frequent urination that are symptomatic of untreated diabetes. If you do not have
diabetes, you could, I suppose, refer to yourself as “a-diabetic.”

6 Write it on your forehead just underneath the Friedmann equation.
7 Although we think of ε as an energy per unit volume and P as a force per unit area, they

both have the same dimensionality: 1 J m−3 = 1Nm−2 = 1kgm−1 s−2.
8 According to the physicist George Gamow, writing his memoirs much later, Einstein

“remarked that the introduction of the cosmological term [Λ] was the biggest blunder of
his life.”



9 The usual analogy that’s made is to an embezzling bank teller who takes money from
the till but who always replaces it before the auditor comes around. Naturally, the more
money a teller is entrusted with, the more frequently the auditor makes random checks.



5

Model Universes

In a spatially homogeneous and isotropic universe, the relation between the
energy density ε(t), the pressure P(t), and the scale factor a(t) is given by the
Friedmann equation,

(5.1)

the fluid equation,

(5.2)

and the equation of state,

(5.3)

In principle, given the appropriate boundary conditions, we can solve
Equations 5.1, 5.2, and 5.3 to yield ε(t), P(t), and a(t) for all times, past and
future. In reality, the evolution of our universe is complicated by the fact that
it contains different components with different equations of state. Let’s start
by seeing how the energy density ε of the different components changes as
the universe expands.

5.1 Evolution of Energy Density
The universe contains nonrelativistic matter and radiation – that’s a



conclusion as firm as the earth under your feet and as plain as daylight. Thus,
the universe contains components with both w = 0 and w = 1/3. It contains
dark energy that is consistent with being a cosmological constant (w = −1).
Moreover, the possibility exists that it may contain still more exotic
components, with different values of w. Fortunately for the cause of
simplicity, the energy density and pressure for the different components of
the universe are additive. Suppose that the universe contains N different
components, with the ith component having an energy density εi and an
equation-of-state parameter wi. We may then write the total energy density ε
as the sum of the energy density of the different components:

(5.4)

The total pressure P is the sum of the pressures of the different components:

(5.5)

Because the energy densities and pressures add in this way, the fluid equation
must hold for each component separately, as long as there is no interaction
between the different components. If this is so, then the component with
equation-of-state parameter wi obeys the equation

(5.6)

or

(5.7)

Equation 5.7 can be rearranged to yield



(5.8)

If we assume that wi is constant, then

(5.9)

Note that Equation 5.9 is derived solely from the fluid equation and the
equation of state; the Friedmann equation doesn’t enter into it.

From Equation 5.9, we conclude that the energy density εm associated with
nonrelativistic matter decreases as the universe expands with the dependence

(5.10)

The energy density in radiation, εr, drops at the steeper rate

(5.11)

Why this difference between matter and radiation? We may write the energy
density of either component in the form ε = nE, where n is the number
density of particles and E is the mean energy per particle. For both relativistic
and nonrelativistic particles, the number density has the dependence n ∝ a−3

as the universe expands, assuming that particles are neither created nor
destroyed.

The energy of nonrelativistic particles, shown in the top panel of Figure
5.1, is contributed solely by their rest mass (E = mc2) and remains constant as
the universe expands. Thus, for nonrelativistic matter, εm = nE = n(mc2) ∝ a
−3. The energy of photons or other massless particles, shown in the bottom
panel of Figure 5.1, has the dependence E = hc/λ ∝ a−1, since their
wavelength λ expands along with the expansion of the universe. Thus, for
photons and other massless particles, εr = nE = n(hc/λ) ∝ a−3a−1 ∝ a−4.



Figure 5.1 The dilution of nonrelativistic particles (“matter”) and relativistic particles
(“radiation”) as the universe expands.

Although we’ve explained why photons have an energy density εr ∝ a−4,
the explanation required the assumption that photons are neither created nor
destroyed. This assumption is wrong: photons are always being created by
luminous objects and absorbed by opaque objects.1 However, it turns out that
the energy density of the cosmic microwave background is larger than the
energy density of all the photons emitted by all the stars in the history of the
universe. To see why this is true, remember, from Section 2.5, that the
present energy density of the CMB, which has a temperature T0 = 2.7255 K,
is

(5.12)

Expressed as a fraction of the critical density, the CMB has a density
parameter

(5.13)



Although the energy density of the CMB is small compared to the critical
density, it is large compared to the energy density of starlight. Galaxy
surveys tell us that the present luminosity density of galaxies is

(5.14)

(By terrestrial standards, the universe is not a well-lit place; this luminosity
density is equivalent to a single 30-watt bulb within a sphere 1 AU in radius.)
As a very rough estimate, let’s assume that galaxies have been emitting light
at this rate for the entire age of the universe,  This
gives an energy density in starlight of

(5.15)

Thus, we expect the average energy density of starlight to be just a few
percent of the energy density of the CMB. In fact, the estimate given above is
a very rough one indeed. Measurements of background radiation from
ultraviolet to infrared, including both direct starlight and starlight absorbed
and reradiated by dust, yield the larger value εstarlight/εCMB ≈ 0.1. In the past,
however, the ratio of starlight density to CMB density was smaller than it is
today. For most purposes, it is an acceptable approximation to ignore non-
CMB photons when computing the mean energy density of photons in the
universe.

The cosmic microwave background, remember, is a relic of the time when
the universe was hot and dense enough to be opaque to photons. If we
extrapolate further back, we reach a time when the universe was hot and
dense enough to be opaque to neutrinos. As a consequence, there should be a
cosmic neutrino background today, analogous to the cosmic microwave
background. The energy density in neutrinos should be comparable to, but
not exactly equal to, the energy density in photons. A detailed calculation
indicates that the energy density of each neutrino flavor should be



(5.16)

(The above result assumes that the neutrinos are relativistic, or, equivalently,
that their energy is much greater than their rest energy mνc2.) The density
parameter of the cosmic neutrino background, taking into account all three
flavors of neutrino, should then be Ων = 0.681ΩCMB, as long as all neutrino
flavors are relativistic. The mean energy per neutrino will be comparable to,
but not exactly equal to, the mean energy per photon:

(5.17)

as long as Eν > mνc2. When the mean energy of a particular neutrino species
drops to ∼ mνc2, then it makes the transition from being “radiation” to being
“matter.”

If all neutrino species were effectively massless today, with mνc2 ≪ 5 ×
10−4 eV, then the present density parameter in radiation would be

(5.18)

We know the energy density of the cosmic microwave background with high
precision. We can calculate theoretically what the energy density of the
cosmic neutrino background should be. The total energy density of
nonrelativistic matter, and that of dark energy, is not quite as well
determined. The available evidence favors a universe in which the density
parameter for matter is currently Ωm,0 ≈ 0.31, while the density parameter for
the cosmological constant is currently ΩΛ,0 ≈ 0.69. Thus, when we want to
employ a model that matches the observed properties of the real universe, we
will use what I call the “Benchmark Model”; this model has Ωr,0 = 9.0 × 10−5

in radiation, Ωm,0 = 0.31 in nonrelativistic matter, and ΩΛ,0 = 1 − Ωr,0 − Ωm,0
≈ 0.69 in a cosmological constant.2



In the Benchmark Model, at the present moment, the ratio of the energy
density in Λ to the energy density in matter is

(5.19)

In the language of cosmologists, the cosmological constant is “dominant”
over matter today in the Benchmark Model. In the past, however, when the
scale factor was smaller, the ratio of densities was

(5.20)

If the universe has been expanding from an initial very dense state, at some
moment in the past, the energy density of matter and Λ must have been equal.
This moment of matter–Λ equality occurred when the scale factor was

(5.21)

Similarly, the ratio of the energy density in matter to the energy density in
radiation is currently

(5.22)

if all three neutrino flavors in the cosmic neutrino background are assumed to
be relativistic today. (It’s even larger if some or all of the neutrino flavors are
massive enough to be nonrelativistic today.) Thus, matter is now strongly
dominant over radiation. However, in the past, the ratio of matter density to
energy density was



(5.23)

Thus, the moment of radiation–matter equality took place when the scale
factor was

(5.24)

Note that as long as a neutrino’s mass is mνc2 ≪ (3400)(5 × 10−4 eV) ∼ 2 eV,
then it was relativistic at a scale factor a = 1/3400, and hence would have
been “radiation” then even if it is “matter” today.

To generalize, if the universe contains different components with different
values of w, Equation 5.9 tells us that in the limit a → 0, the component with
the largest value of w is dominant. If the universe expands forever, then as a
→ ∞, the component with the smallest value of w is dominant. The evidence
indicates we live in a universe where radiation  was dominant during
the early stages, followed by a period when matter (w = 0) was dominant,
followed by a period when the cosmological constant (w = −1) is dominant.

In a continuously expanding universe, the scale factor a is a monotonically
increasing function of t. Thus, in a continuously expanding universe, the
scale factor a can be used as a surrogate for the cosmic time t. We can refer,
for instance, to the moment when a = 0.766 with the assurance that we are
referring to a unique moment in the history of the universe. In addition,
because of the simple relation between scale factor and redshift, 1+z = 1/a,
cosmologists often use redshift as a surrogate for time. For example, they
make statements such as, “Matter–lambda equality took place at a redshift
zmΛ ≈ 0.31.” That is, light that was emitted at the time of matter–lambda
equality is observed by us with its wavelength stretched by a factor 1 + zmΛ ≈
1.31.

One reason why cosmologists use scale factor or redshift as a surrogate for
time is that the conversion from a to t is not simple to calculate in a multiple-
component universe like our own. In a universe with many components, the
Friedmann equation can be written in the form



(5.25)

Each term on the right-hand side of Equation 5.25 has a different dependence
on scale factor; radiation contributes a term ∝ a−2, matter contributes a term
∝ a−1, curvature contributes a term independent of a, and the cosmological
constant Λ contributes a term ∝ a2. Solving Equation 5.25 for a multiple-
component model like the Benchmark Model does not yield a simple analytic
form for a(t). However, looking at single-component universes, in which
there is only one term on the right-hand side of Equation 5.25, yields useful
insight into the physics of an expanding universe.

5.2 Empty Universes
A particularly simple universe is one that is empty – no radiation, no matter,
no cosmological constant, no contribution to ε of any sort. For this universe,
the Friedmann equation takes the form (compare to Equation 5.25)

(5.26)

One solution to this equation has  and κ = 0. An empty, static, spatially
flat universe is a permissible solution to the Friedmann equation. This is the
universe whose geometry is described by the Minkowski metric of Equation
3.37, and in which all the transformations of special relativity hold true.

However, Equation 5.26 tells us that it is also possible to have an empty
universe with κ = −1. (Positively curved empty universes are forbidden, since
that would require an imaginary value of ȧ in Equation 5.26.) A negatively
curved empty universe must be expanding or contracting, with

(5.27)



In an expanding empty universe, integration of this relation yields a scale
factor of the form3

(5.28)

where t0 = R0/c. In Newtonian terms, if there’s no gravitational force at work,
then the relative velocity of any two points is constant, and the scale factor a
simply increases linearly with time in an empty universe.

The scale factor in an empty, expanding universe is shown as the dashed
line in Figure 5.2. Note that in an empty universe,  with nothing to
speed or slow the expansion, the age of the universe is exactly equal to the
Hubble time.

Figure 5.2 Scale factor versus time for an expanding, empty universe (dashed), a flat,
matter-dominated universe (dotted), a flat, radiation-dominated universe (solid), and a flat,
Λ-dominated universe (dot-dash).

An empty, expanding universe might seem nothing more than a
mathematical curiosity.4 However, if a universe has a density ε that is very
small compared to the critical density εc (that is, if Ω ≪ 1), then the linear
scale factor of Equation 5.28 is a good approximation to the true scale factor.



Imagine you are in an expanding universe with a negligibly small value for
the density parameter Ω, so that you can reasonably approximate it as an
empty, negatively curved universe, with t0 =  You observe a
distant light source, such as a galaxy, which has a redshift z. The light you
observe now, at t = t0, was emitted at an earlier time, t = te. In an empty
expanding universe,

(5.29)

so it is easy to compute the time when the light you observe from the source
was emitted:

(5.30)

When observing a galaxy with a redshift z, in addition to asking, “When was
the light from that galaxy emitted?” you may also ask, “How far away is that
galaxy?” In Section 3.5 we saw that in any universe described by a
Robertson– Walker metric, the current proper distance from an observer at
the origin to a galaxy at coordinate location (r, θ, ϕ) is (see Equation 3.44)

(5.31)

Moreover, if light is emitted by the galaxy at time te and detected by the
observer at time t0, the null geodesic followed by the light satisfies Equation
3.54:

(5.32)

Thus, the current proper distance from you (the observer) to the galaxy (the



light source) is

(5.33)

Equation 5.33 holds true in any universe whose geometry is described by a
Robertson–Walker metric. In the specific case of an empty expanding
universe, a(t) = t/t0, and thus

(5.34)

Expressed in terms of the redshift z of the observed galaxy,

(5.35)

This relation is plotted as the dashed line in the left panel of Figure 5.3. In the
limit z ≪ 1, there is a linear relation between dp and z. In the limit z ≫ 1,
however, dp ∝ ln z in an empty expanding universe.



Figure 5.3 The proper distance to an object with observed redshift z, measured in units of
the Hubble distance, c/H0. Left panel: the proper distance at the time the light is observed.
Right panel: proper distance at the time the light was emitted. Line types are the same as
those of Figure 5.2.

In an empty expanding universe, we can see objects that are currently at
an arbitrarily large distance. At first glance, it may seem counterintuitive that
we can see a light source at a proper distance much greater than c/H0 when
the age of the universe is only 1/H0. However, remember that dp(t0) is the
proper distance to the light source at the time of observation; at the time of
emission, the proper distance dp(te) was smaller by a factor a(te)/a(t0) = 1/(1 +
z). In an empty expanding universe, the proper distance at the time of
emission was

(5.36)

shown as the dashed line in the right panel of Figure 5.3. In an empty
expanding universe, dp(te) has a maximum for objects with a redshift z = e −
1 ≈ 1.72, where dp(te) = (1/e) c/H0 ≈ 0.37 c/H0. Objects with much higher
redshifts are seen as they were very early in the history of the universe, when
their proper distance from the observer was very small.

5.3 Single-component Universes
Setting the energy density ε equal to zero is one way of simplifying the
Friedmann equation. Another way is to set κ = 0 and to demand that the
universe contain only a single component, with a single value of w. In such a
spatially flat, single-component universe, the Friedmann equation takes the
form

(5.37)



To solve this equation, we first make the educated guess that the scale factor
has the power-law form a ∝ tq. The left-hand side of Equation 5.37 is then
∝ t2q−2, and the right-hand side is ∝ t−(1+3w)q, yielding the solution

(5.38)

with the restriction w ≠ −1. With the proper normalization, the scale factor in
a spatially flat, single-component universe is

(5.39)

The age of the universe, t0, is linked to the present energy density by the
relation

(5.40)

The Hubble constant in such a universe is

(5.41)

The age of the universe, in terms of the Hubble time, is then

(5.42)

In a spatially flat universe, if w > −1/3, the universe is younger than the
Hubble time. If w < −1/3, the universe is older than the Hubble time.

As a function of scale factor, the energy density of a component with



equation-of-state parameter w is

(5.43)

so in a spatially flat universe with only a single component, the energy
density as a function of time is (combining Equations 5.39 and 5.43)

(5.44)

regardless of the value of w. Making the substitution

(5.45)

Equation 5.44 can be written in the form

(5.46)

Suppose yourself to be in a spatially flat, single-component universe. If
you see a galaxy, or other distant light source, with a redshift z, you can use
the relation

(5.47)

to compute the time te at which the light from the distant galaxy was emitted:

(5.48)



The current proper distance to the galaxy is

(5.49)

when w ≠ −1/3. In terms of H0 and z rather than t0 and te, the current proper
distance is

(5.50)

The most distant object you can see (in theory) is one for which the light
emitted at t = 0 is just now reaching us at t = t0. The proper distance (at the
time of observation) to such an object is called the horizon distance.5 Here on
Earth, the horizon is a circle centered on you, beyond which you cannot see
because of the Earth’s curvature. In the universe, the horizon is a spherical
surface centered on you, beyond which you cannot see because light from
more distant objects has not had time to reach you. In a universe described by
a Robertson–Walker metric, the current horizon distance is

(5.51)

In a spatially flat universe, the horizon distance has a finite value if w > −1/3.
In such a case, computing the value of dp(t0) in the limit te → 0 (or,
equivalently, z → ∞) yields

(5.52)

In a flat universe dominated by matter (w = 0) or by radiation (w = 1/3), an
observer can see only a finite portion of the infinite volume of the universe.
The portion of the universe lying within the horizon for a particular observer



is referred to as the visible universe for that observer. The visible universe
consists of all points in space that have had sufficient time to send
information, in the form of photons or other relativistic particles, to the
observer. In other words, the visible universe consists of all points that are
causally connected to the observer.

In a flat universe with w ≤ −1/3, the horizon distance is infinite, and all of
space is causally connected to any observer. In such a universe with w ≤
−1/3, you could see every point in space – assuming the universe was
transparent, of course. However, for extremely distant points, you would see
extremely redshifted versions of what they looked like extremely early in the
history of the universe.

5.3.1 Matter only
Let’s now look at specific examples of spatially flat universes, starting with a
universe containing only nonrelativistic matter (w = 0).6 The age of such a
universe is

(5.53)

and the horizon distance is

(5.54)

The scale factor, as a function of time, is

(5.55)

illustrated as the dotted line in Figure 5.2. If you see a galaxy with redshift z
in a flat, matter-only universe, the proper distance to that galaxy, at the time
of observation, is



(5.56)

illustrated as the dotted line in the left panel of Figure 5.3. The proper
distance at the time the light was emitted was smaller by a factor 1/(1 + z):

(5.57)

illustrated as the dotted line in the right panel of Figure 5.3. In a flat, matter-
only universe, dp(te) has a maximum for galaxies with a redshift z = 5/4,
where dp(te) = (8/27)c/H0 ≈ 0.30c/H0.

5.3.2 Radiation only
The case of a spatially flat universe containing only radiation is of particular
interest, since early in the history of our own universe, the radiation (w = 1/3)
term dominated the right-hand side of the Friedmann equation (see Equation
5.25). Thus, at early times – long before the time of radiation–matter equality
– the universe was well described by a spatially flat, radiation-only model. In
an expanding, flat universe containing only radiation, the age of the universe
is

(5.58)

and the horizon distance at t0 is

(5.59)

In the special case of a flat, radiation-only universe, the horizon distance is
exactly equal to the Hubble distance, which is not generally the case. The



scale factor of a flat, radiation-only universe is

(5.60)

illustrated as the solid line in Figure 5.2. If at a time t0 you observe a distant
light source with redshift z in a flat, radiation-only universe, the proper
distance to the light source will be

(5.61)

illustrated as the solid line in the left panel of Figure 5.3. The proper distance
at the time the light was emitted was

(5.62)

illustrated as the solid line in the right panel of Figure 5.3. In a flat, radiation-
dominated universe, dp(te) has a maximum for light sources with a redshift z
= 1, where dp(te) = 0.25c/H0.

From Equation (5.46), the energy density in a flat, radiation-only universe
is

(5.63)

Using the blackbody relation between energy density and temperature, given
in Equations 2.28 and 2.29, we may assign a temperature to a universe
dominated by blackbody radiation:



(5.64)

Here TP is the Planck temperature, TP = 1.42 × 1032 K. The mean energy per
photon in a radiation-dominated universe is then

(5.65)

and the number density of photons is (combining Equations 5.63 and 5.65)

(5.66)

In a flat, radiation-only universe, as t → 0, εr → ∞ (Equation 5.63). Thus, at
the instant t = 0, the energy density of our own universe (well approximated
as a flat, radiation-only model in its early stages) was infinite, according to
this analysis; this infinite energy density was provided by an infinite number
density of particles (Equation 5.66), each of infinite energy (Equation 5.65).
Should we take these infinities seriously? Not really, since the assumptions of
general relativity, on which the Friedmann equation is based, break down at t
≈ tP.

Why can’t general relativity be used at times earlier than the Planck time?
General relativity is a classical theory; that is, it does not take into account
the effects of quantum mechanics. In cosmological contexts, general
relativity assumes that the energy content of the universe is smooth down to
arbitrarily small scales, instead of being parceled into individual quanta. As
long as a radiation-dominated universe has many quanta, or photons, within a
horizon distance, then the approximation of a smooth, continuous energy
density is justifiable, and we may safely use the results of general relativity.
However, if there are only a few photons within the visible universe, then
quantum mechanical effects must be taken into account, and the classical
results of general relativity no longer apply. In a flat, radiation-only universe,
the horizon distance grows linearly with time:



(5.67)

so the volume of the visible universe at time t is

(5.68)

Combining Equations 5.68 and 5.66, we find that the number of photons
inside the horizon at time t is

(5.69)

The quantization of the universe can no longer be ignored when N(t) ≈ 1,
equivalent to a time t ≈ 1.4tP.

To accurately describe the universe at its very earliest stages, prior to the
Planck time, a theory of quantum gravity is needed. Unfortunately, a
complete theory of quantum gravity does not yet exist. Consequently, in this
book, we will not deal with times earlier than the Planck time, t ∼ tP ∼ 10−43 s,
when the number density of photons was  and the
mean photon energy was Emean ∼ EP ∼ 1028 eV.

5.3.3 Lambda only
Consider a spatially flat universe in which the energy density is contributed
by a cosmological constant Λ.7 For a flat, lambda-dominated universe, the
Friedmann equation takes the form

(5.70)



where εΛ is constant with time. This equation can be rewritten in the form

(5.71)

where

(5.72)

The solution to Equation 5.71 in an expanding universe is

(5.73)

This scale factor is shown as the dot-dashed line in Figure 5.2. A spatially flat
universe with nothing but a cosmological constant is exponentially
expanding; we’ve seen an exponentially expanding universe before, in
Section 2.3, under the label “Steady State universe.” In a Steady State
universe, the density ε of the universe remains constant because of the
continuous creation of real particles. If the cosmological constant Λ is
provided by the vacuum energy, then the density ε of a lambda-dominated
universe remains constant because of the continuous creation and annihilation
of virtual particle–antiparticle pairs.

A flat universe containing nothing but a cosmological constant is infinitely
old, and has an infinite horizon distance dhor. If, in a flat, lambda-only
universe, you see a light source with a redshift z, the proper distance to the
light source, at the time you observe it, is

(5.74)

shown as the dot-dashed line in the left panel of Figure 5.3. The proper
distance at the time the light was emitted was



(5.75)

shown as the dot-dashed line in the right panel of Figure 5.3.
An exponentially growing universe, such as the flat lambda-dominated

model, is the only universe for which dp(t0) is linearly proportional to z for all
values of z. In other universes, the relation dp(t0) ∝ z holds true only in the
limit z ≪ 1. In a flat lambda-dominated universe, a light source with z ≫ 1 is
at a distance dp(t0) ≫ c/H0 at the time of observation; however, the observed
photons were emitted by the light source when it was at a distance dp(te) ≈
c/H0. Once the light source is more than a Hubble distance from the observer,
its recession velocity is greater than the speed of light, and photons from the
light source can no longer reach the observer.

5.4 Multiple-component Universes
The simple models that we’ve examined so far – empty universes, or flat
universes with a single component – continue to expand forever if they are
expanding at t = t0. Is it possible to have universes that stop expanding, then
start to collapse? Is it possible to have universes in which the scale factor is
not a simple power-law or exponential function of time? The short answer to
these questions is “yes.” To study universes with more complicated behavior,
however, it is necessary to put aside our simple toy universes, with a single
term on the right-hand side of the Friedmann equation, and look at
complicated toy universes, with multiple terms on the right-hand side of the
Friedmann equation.

The Friedmann equation, in general, can be written in the form

(5.76)

where  and ε(t) is the energy density contributed by all the
components of the universe, including the cosmological constant. Equation
4.36 tells us the relation between κ, R0, H0, and Ω0,



(5.77)

so we can rewrite the Friedmann equation without explicitly including the
curvature:

(5.78)

Dividing by  this becomes

(5.79)

where the critical density today is

(5.80)

We know that our universe contains matter, for which the energy density
εm has the dependence εm = εm,0/a3, and radiation, for which the energy
density has the dependence εr = εr,0/a4. Current evidence indicates the
presence of a cosmological constant, with energy density εΛ = εΛ,0 =
constant. We will therefore consider a universe with contributions from
matter (w = 0), radiation (w = 1/3), and a cosmological constant (w = −1).8

In our universe, we expect the Friedmann equation to take the form

(5.81)

where Ωr,0 = εr,0/εc,0, Ωm,0 = εm,0/εc,0, ΩΛ,0 = εΛ,0/εc,0, and Ω0 = Ωr,0 + Ωm,0 +



ΩΛ,0. The Benchmark Model has Ω0 = 1, and hence is spatially flat.
However, although a perfectly flat universe is consistent with the data, it is
not demanded by the data. Thus, prudence dictates that we should keep in
mind the possibility that the curvature term, (1 − Ω0)/a2 in Equation 5.81,
might be nonzero.

Since H = ȧ/a, multiplying Equation 5.81 by a2, then taking the square
root, yields

(5.82)

The cosmic time t as a function of scale factor a can then be found by
performing the integral

(5.83)

This is not a user-friendly integral: in the general case, it doesn’t have a
simple analytic solution. However, for given values of Ωr,0, Ωm,0, and ΩΛ,0, it
can be integrated numerically.

In many circumstances, the integral in Equation 5.83 has a simple analytic
approximation to its solution. For instance, in the limit that a ≪ arm ≈
2.9×10−4, the Benchmark Model can be approximated as a flat, radiation-only
universe. In the limit that a ≫ amΛ ≈ 0.77, it can be approximated as a
lambda-only universe. However, during some epochs of the universe’s
expansion, two of the components are of comparable density, and provide
terms of roughly equal size in the Friedmann equation. During these epochs,
a single-component model is a poor description of the universe, and a two-
component model must be utilized. For instance, at scale factors a ∼ arm ≈ 2.9
× 10−4, the Benchmark Model is approximated by a flat universe containing
only radiation and matter. Such a universe is examined in Section 5.4.4. For
scale factors a ∼ amΛ ≈ 0.77, the Benchmark Model is approximated by a flat
universe containing only matter and a cosmological constant. Such a universe
is examined in Section 5.4.2.



First, however, we will examine a universe that is of great historical
interest to cosmology; a universe containing both matter and curvature (either
negative or positive). During the mid-twentieth century, when the
cosmological constant was out of fashion, cosmologists concentrated much of
their interest on the study of curved, matter-dominated universes. In addition
to being of historical interest, these curved, matter-dominated universes
provide useful physical insight into the interplay between curvature,
expansion, and density.

5.4.1 Matter + Curvature
Consider a universe containing nothing but pressureless matter, with w = 0. If
such a universe is spatially flat, then it expands with time, as demonstrated in
Section 5.3.1, with a scale factor

(5.84)

Such a flat, matter-only universe expands outward forever. Such a fate is
sometimes known as the “Big Chill,” since the temperature of the universe
decreases monotonically with time as the universe expands. At this point, it is
nearly obligatory for a cosmology text to quote T. S. Eliot: “This is the way
the world ends / Not with a bang but a whimper.”9

In a curved universe containing nothing but matter, the ultimate fate of the
cosmos is intimately linked to the density parameter Ω0. The Friedmann
equation in a curved, matter-dominated universe (Equation 5.81) can be
written in the form

(5.85)

since Ωm,0 = Ω0 in such a universe. Suppose you are in a universe that is
currently expanding (H0 > 0) and contains nothing but nonrelativistic matter.
If you ask the question, “Will the universe ever cease to expand?” then



Equation 5.85 enables you to answer that question. For the universe to cease
expanding, there must be some moment at which H(t) = 0. Since the first
term on the right-hand side of Equation 5.85 is always positive, H(t) = 0
requires the second term on the right-hand side to be negative. This means
that a matter-dominated universe will cease to expand if Ω0 > 1, and hence κ
= +1. At the time of maximum expansion, H(t) = 0 and thus

(5.86)

The scale factor at the time of maximum expansion will therefore be

(5.87)

where Ω0, remember, is the density parameter as measured at a scale factor a
= 1.

Note that in Equation 5.85, the Hubble parameter enters only as H2. Thus,
the contraction phase, after the universe reaches maximum expansion, is just
the time reversal of the expansion phase. (More precisely, the contraction is a
perfect time reversal of the expansion only when the universe is perfectly
homogeneous and the expansion is perfectly adiabatic, or entropy-
conserving. In a real, lumpy universe, entropy is not conserved on small
scales. Stars, for instance, generate entropy as they emit photons. During the
contraction phase of an Ω0 > 1 universe, small-scale entropy-producing
processes will NOT be reversed. Stars will not absorb the photons they
previously emitted; people will not live backward from grave to cradle.)
Eventually, the Ω0 > 1 universe will collapse down to a = 0, in an event
sometimes called the “Big Crunch,” after a finite time t = tcrunch. A matter-
dominated universe with Ω0 > 1 not only has finite spatial extent, but also has
a finite duration in time; just as it began in a hot, dense state, so it will end in
a hot, dense state.

A matter-dominated universe with Ω0 > 1 will expand to a maximum scale
factor amax, then collapse in a Big Crunch. What is the ultimate fate of a



matter-dominated universe with Ω0 < 1 and κ = −1? In the Friedmann
equation for such a universe (Equation 5.85), both terms on the right-hand
side are positive. Thus if such a universe is expanding at a time t = t0, it will
continue to expand forever. At early times, when the scale factor is small (a
≪ Ω0/[1 − Ω0]), the matter term of the Friedmann equation will dominate,
and the scale factor will grow at the rate a ∝ t2/3. Ultimately, however, the
density of matter will be diluted far below the critical density, and the
universe will expand like the negatively curved empty universe, with a ∝ t.

If a universe contains nothing but matter, its curvature, its density, and its
ultimate fate are closely linked, as shown in Table 5.1. At this point, the
obligatory quote is from Robert Frost: “Some say the world will end in fire /
Some say in ice.”10 In a matter-dominated universe, if the density is greater
than the critical density, the universe will end in a fiery Big Crunch; if the
density is less than or equal to the critical density, the universe will end in an
icy Big Chill.

Table 5.1 Curved, matter-dominated universes.

Density Curvature Ultimate fate
Ω0 < 1 κ = −1 Big Chill (a ∝ t)
Ω0 = 1 κ = 0 Big Chill (a ∝ t2/3)
Ω0 > 1 κ = +1 Big Crunch

In a curved universe containing only matter, the scale factor a(t) can be
computed explicitly. The Friedmann equation can be written in the form

(5.88)

so the age t of the universe at a given scale factor a is given by the integral

(5.89)



When Ω0 ≠ 1, the solution to this integral is most compactly written in a
parametric form. The solution when Ω0 > 1 is

(5.90)

and

(5.91)

where the parameter θ runs from 0 to 2π. Given this parametric form, the time
that elapses between the Big Bang at θ = 0 and the Big Crunch at θ = 2π can
be computed as

(5.92)

A plot of a versus t in the case Ω0 = 1.1 is shown as the dotted line in Figure
5.4. The a ∝ t2/3 behavior of an Ω0 = 1 universe is shown as the solid line.



Figure 5.4 Scale factor versus time for universes containing only matter. Solid line: a(t) for
a universe with Ω0 = 1 (flat). Dashed line: a(t) for a universe with Ω0 = 0.9 (negatively
curved). Dotted line: a(t) for a universe with Ω0 = 1.1 (positively curved). The right panel
is a blow-up of the small rectangle near the lower left corner of the left panel.

The solution of Equation 5.89 for the case Ω0 < 1 can be written in
parametric form as

(5.93)

and

(5.94)

where the parameter η runs from 0 to infinity. A plot of a versus t in the case
Ω0 = 0.9 is shown as the dashed line in Figure 5.4. Although the ultimate fate
of an Ω0 = 0.9 universe is very different from that of an Ω0 = 1.1 universe, as
shown graphically in the left panel of Figure 5.4, it is very difficult, at t = t0,
to tell a universe with Ω0 slightly less than one from that with Ω0 slightly
greater than one. As shown in the right panel of Figure 5.4, the scale factors
of the Ω0 = 1.1 universe and the Ω0 = 0.9 universe start to diverge
significantly only after a Hubble time or more.

Scientists sometimes joke that they are searching for a theory of the
universe that is compact enough to fit on the front of a T-shirt. If the energy
content of the universe were contributed almost entirely by nonrelativistic
matter, then an appropriate T-shirt slogan would be:

DENSITY
IS

DESTINY!
If the density of matter is less than the critical value, then the destiny of the
universe is an ever-expanding Big Chill; if the density is greater than the
critical value, then the destiny is a recollapsing Big Crunch. Like all terse



summaries of complex concepts, the slogan “Density is Destiny!” requires a
qualifying footnote. In this case, the required footnote is “∗if Λ = 0.” If the
universe has a cosmological constant (or more generally, any component with
w < −1/3), then the equation Density = Destiny = Curvature no longer
applies.

5.4.2 Matter + Lambda
Consider a universe that is spatially flat, but contains both matter and a
cosmological constant. (Such a universe is of particular interest to us, since it
is a close approximation to our own universe at the present day.) If, at a given
time t = t0, the density parameter in matter is Ωm,0 and the density parameter
in a cosmological constant Λ is ΩΛ,0, the requirement that space be flat tells
us that

(5.95)

and the Friedmann equation for the flat “matter plus lambda” universe
reduces to

(5.96)

The first term on the right-hand side of Equation 5.96 represents the
contribution of matter, and is always positive. The second term represents the
contribution of a cosmological constant; it is positive if Ωm,0 < 1, implying
ΩΛ,0 > 0, and negative if Ωm,0 > 1, implying ΩΛ,0 < 0. Thus, a flat universe
with ΩΛ,0 > 0 will continue to expand forever if it is expanding at t = t0; this
is another example of a Big Chill universe. In a universe with ΩΛ,0 < 0,
however, the negative cosmological constant provides an attractive force, not
the repulsive force of a positive cosmological constant. A flat universe with
ΩΛ,0 < 0 will cease to expand at a maximum scale factor



(5.97)

and will collapse back down to a = 0 at a cosmic time

(5.98)

For a given value of H0, the larger the value of Ωm,0, the shorter the lifetime
of the universe. For a flat, ΩΛ,0 < 0 universe, the Friedmann equation can be
integrated to yield the analytic solution

(5.99)

A plot of a versus t in the case Ωm,0 = 1.1, ΩΛ,0 = −0.1 is shown as the dotted
line in Figure 5.5. The a ∝ t2/3 behavior of an Ωm,0 = 1, ΩΛ,0 = 0 universe is
shown, for comparison, as the solid line. A flat universe with ΩΛ,0 < 0 ends in
a Big Crunch, reminiscent of that for a positively curved, matter-only
universe. However, with a negative cosmological constant providing an
attractive force, the lifetime of a flat universe with ΩΛ,0 < 0 is exceptionally
short. For instance, we have seen that a positively curved universe with Ωm,0
= 1.1 undergoes a Big Crunch after a lifetime  (Figure 5.4).
However, a flat universe with Ωm,0 = 1.1 and ΩΛ,0 = −0.1 has a lifetime of
only 



Figure 5.5 Scale factor versus time for flat universes containing both matter and a
cosmological constant. Solid line: a(t) for a universe with Ωm,0 = 1, ΩΛ,0 = 0. Dashed line:
a(t) for a universe with Ωm,0 = 0.9, ΩΛ,0 = 0.1. Dotted line: a(t) for a universe with Ωm,0 =
1.1, ΩΛ,0 = −0.1. The right panel is a blow-up of the small rectangle near the lower left
corner of the left panel.

Although a negative cosmological constant is permitted by the laws of
physics, it appears that we live in a universe with a positive cosmological
constant. In a flat universe with Ωm,0 < 1 and ΩΛ,0 > 0, the density
contributions of matter and the cosmological constant are equal at the scale
factor (Equation 5.21):

(5.100)

For a flat, ΩΛ,0 > 0 universe, the Friedmann equation can be integrated to
yield the analytic solution

(5.101)



A plot of a versus t in the case Ωm,0 = 0.9, ΩΛ,0 = 0.1 is shown as the dashed
line in Figure 5.5. At early times, when a ≪ amΛ, Equation 5.101 reduces to
the relation

(5.102)

giving the a ∝ t2/3 dependence required for a flat, matter-dominated
universe. At late times, when a ≫ amΛ, Equation 5.101 reduces to

(5.103)

giving the a ∝ eKt dependence required for a flat, lambda-dominated
universe. Suppose you are in a flat universe containing nothing but matter
and a cosmological constant; if you measure H0 and Ωm,0, then Equation
5.101 tells you that the age of the universe is

(5.104)

If we approximate our own universe as having Ωm,0 = 0.31 and ΩΛ,0 = 0.69,
we find that its current age is

(5.105)

assuming H0 = 68 ± 2 kms−1 Mpc−1. (We’ll see in Section 5.5 that ignoring
the radiation content of the universe has an insignificant effect on our
estimate of t0.) The age at which matter and the cosmological constant had
equal energy density was



(5.106)

Thus, if our universe is well described by the Benchmark Model, with Ωm,0 =
0.31 and ΩΛ,0 ≈ 0.69, then the cosmological constant has been the dominant
component of the universe for the last 3.6 billion years or so.

5.4.3 Matter + Curvature + Lambda
By choosing different values of Ωm,0 and ΩΛ,0, without constraining the
universe to be flat, we can create model universes with scale factors a(t) that
exhibit very interesting behavior. Start by writing down the Friedmann
equation for a curved universe with both matter and a cosmological constant:

(5.107)

If Ωm,0 > 0 and ΩΛ,0 > 0, then both the first and last term on the right-hand
side of Equation 5.107 are positive. However, if Ωm,0 + ΩΛ,0 > 1, so that the
universe is positively curved, then the central term on the right-hand side is
negative. As a result, for some choices of Ωm,0 and ΩΛ,0, the value of H2 will
be positive for small values of a (where matter dominates) and for large
values of a (where Λ dominates), but will be negative for intermediate values
of a (where the curvature term dominates). Since negative values of H2 are
unphysical, this means that these universes have a forbidden range of scale
factors. Suppose such a universe starts out with a ≫ 1 and H < 0; that is, it is
contracting from a low-density, Λ-dominated state. As the universe contracts,
however, the negative curvature term in Equation 5.107 becomes dominant,
causing the contraction to stop at a minimum scale factor a = amin, and then
expand outward again in a “Big Bounce.” Thus, it is possible to have a
universe that expands outward at late times, but never had an initial Big
Bang, with a = 0 at t = 0.

Another possibility, if the values of Ωm,0 and ΩΛ,0 are chosen just right, is



a “loitering” universe. Such a universe starts in a matter-dominated state,
expanding outward with a ∝ t2/3. Then, however, it enters a stage (called the
loitering stage) in which a is very nearly constant for a long period of time.
During this time it is almost – but not quite – Einstein’s static universe. After
the loitering stage, the cosmological constant takes over, and the universe
starts to expand exponentially.11

Figure 5.6 shows the general behavior of the scale factor a(t) as a function
of Ωm,0 and ΩΛ,0. In the region labeled “Big Crunch,” the universe starts with
a = 0 at t = 0, reaches a maximum scale factor amax, then recollapses to a = 0
at a finite time t = tcrunch. Note that Big Crunch universes can be positively
curved, negatively curved, or flat. In the region labeled “Big Chill,” the
universe starts with a = 0 at t = 0, then expands outward forever, with a → ∞
as t → ∞. Like Big Crunch universes, Big Chill universes can have any sign
for their curvature. In the region labeled “Big Bounce,” the universe starts in
a contracting state, reaches a minimum scale factor a = amin > 0 at some time
tbounce, then expands outward forever, with a → ∞ as t → ∞. Universes that
fall just below the dividing line between Big Bounce universes and Big Chill
universes are loitering universes. The closer such a universe lies to the Big
Bounce–Big Chill dividing line in Figure 5.6, the longer its loitering stage
lasts.



Figure 5.6 Properties of universes containing matter and a cosmological constant. The
dashed line indicates flat universes (κ = 0). The dotted line indicates universes that are not
accelerating today (q0 = 0 at a = 1). Also shown are the regions where the universe has a
“Big Chill” expansion (a → ∞ as t → ∞), a “Big Crunch” recollapse (a → 0 as t → tcrunch),
a loitering phase (a ≈ constant for an extended period), or a “Big Bounce” (a = amin > 0 at t
= tbounce).

To illustrate the possible types of expansion and contraction, Figure 5.7
shows a(t) for a set of four model universes. Each of these universes has the
same current density parameter for matter: Ωm,0 = 0.31, measured at t = t0 and
a = 1. These universes cannot be distinguished from each other by measuring
their current matter density and Hubble constant. Nevertheless, thanks to
their different values for the cosmological constant, they have very different
pasts and very different futures. The dotted line in Figure 5.7 shows the scale
factor a(t) for a universe with ΩΛ,0 = 0.69; this universe is spatially flat, and
is destined to end in an exponentially expanding Big Chill. The dashed line
shows a(t) for a universe with ΩΛ,0 = −0.31; this universe has an energy
density of zero, and is negatively curved. After expanding to a maximum
scale factor amax ≈ 1.93, it will recollapse in a Big Crunch. The dot-dash line
shows the scale factor for a universe with ΩΛ,0 = 1.7289; this is a positively
curved loitering universe, which spends a long time with a scale factor a ≈
aloiter ≈ 0.45. Finally, the solid line shows a universe with ΩΛ,0 = 1.8. This
universe lies above the Big Chill–Big Bounce dividing line in Figure 5.6; it is
a positively curved universe that “bounced” at a scale factor a = abounce ≈
0.552. If we lived in this Big Bounce universe, the largest redshift we could
see would be zmax = 1/abounce − 1 ≈ 0.81. Extremely distant light sources
would actually be blueshifted.



Figure 5.7 Scale factor versus time in four different universes, each with Ωm,0 = 0.31.
Dotted line: a flat “Big Chill” universe (ΩΛ,0 = 0.69, κ = 0). Dashed line: a “Big Crunch”
universe (ΩΛ,0 = −0.31, κ = −1). Dot-dash line: a loitering universe (ΩΛ,0 = 1.7289, κ = +1).
Solid line: a “Big Bounce” universe (ΩΛ,0 = 1.8, κ = +1).

5.4.4 Radiation + Matter
In our universe, radiation–matter equality took place at a scale factor arm ≡
Ωr,0/Ωm,0 ≈ 2.9 × 10−4. At scale factors a ≪ arm, the universe is well
described by a flat, radiation-only model, as described in Section 5.3.2. At
scale factors a ∼ arm, the universe is better described by a flat model
containing both radiation and matter. The Friedmann equation around the
time of radiation–matter equality can be written in the approximate form

(5.108)

This can be rearranged in the form



(5.109)

Integration yields a fairly simple relation for t as a function of a during the
epoch when only radiation and matter are significant:

(5.110)

In the limit a ≪ arm, this gives the appropriate result for the radiation-
dominated phase of evolution,

(5.111)

In the limit a ≫ arm (but before curvature or Λ contributes significantly to
the Friedmann equation), the approximate result for a(t) becomes

(5.112)

The time of radiation–matter equality, trm, can be found by setting a = arm in
Equation 5.110:

(5.113)

For the Benchmark Model, with Ωr,0 = 9.0 × 10−5, Ωm,0 = 0.31, and 
14.4 Gyr, the time of radiation–matter equality was

(5.114)



The epoch when the universe was radiation-dominated was only about 50
millennia long. This is sufficiently brief that it justifies our ignoring the
effects of radiation when computing the age of the universe. The age 

 13.7 Gyr that we computed in Section 5.4.2 (ignoring
radiation) would only be altered by a few parts per million if we included the
effects of radiation. This minor correction is dwarfed by the uncertainty in the
value of 

5.5 Benchmark Model
The Benchmark Model, which we have adopted as a good fit to the currently
available observational data, is spatially flat, and contains radiation, matter,
and a cosmological constant. Some of its properties are listed, for ready
reference, in Table 5.2. The Hubble constant of the Benchmark Model is
assumed to be H0 = 68 km s−1 Mpc−1. The radiation in the Benchmark Model
consists of photons and neutrinos. The photons are assumed to be provided
solely by a cosmic microwave background with current temperature T0 =
2.7255 K and density parameter Ωγ,0 = 5.35 × 10−5. The energy density of the
cosmic neutrino background is theoretically calculated to be 68.1% of that of
the cosmic microwave background, as long as neutrinos are relativistic. If a
neutrino has a nonzero mass mν, Equation 5.17 tells us that it defects from the
“radiation” column to the “matter” column when the scale factor is a ∼ 5 ×
10−4 eV/(mνc2). The matter content of the Benchmark Model consists partly
of baryonic matter (that is, matter composed of protons and neutrons, with
associated electrons) and partly of nonbaryonic dark matter. The baryonic
material that we are familiar with from our everyday existence has a density
parameter Ωbary,0 ≈ 0.048 today. The density parameter of the nonbaryonic
dark matter is over five times greater: Ωdm,0 ≈ 0.262. The bulk of the energy
density in the Benchmark Model, however, is not provided by radiation or
matter, but by a cosmological constant, with ΩΛ,0 = 1 − Ωm,0 − Ωr,0 ≈ 0.69.

Table 5.2 Properties of the Benchmark Model.

List of ingredients



Photons: Ωγ,0 = 5.35 × 10−5

Neutrinos: Ων,0 = 3.65 × 10−5

Total radiation: Ωr,0 = 9.0 × 10−5

   
Baryonic matter: Ωbary,0 = 0.048
Nonbaryonic dark matter: Ωdm,0 = 0.262
Total matter: Ωm,0 = 0.31
   
Cosmological constant: ΩΛ,0 ≈ 0.69
   
Important epochs
Radiation–matter equality: arm = 2.9 × 10−4 trm = 0.050 Myr

Matter–lambda equality: amΛ = 0.77 tmΛ = 10.2 Gyr
Now: a0 = 1 t0 = 13.7 Gyr

With Ωr,0, Ωm,0, and ΩΛ,0 known, the scale factor a(t) can be computed
numerically using the Friedmann equation, in the form of Equation 5.81.
Figure 5.8 shows the scale factor, thus computed, for the Benchmark Model.
Note that the transition from the a ∝ t1/2 radiation-dominated phase to the a
∝ t2/3 matter-dominated phase is not an abrupt one; neither is the later
transition from the matter-dominated phase to the exponentially growing
lambda-dominated phase. One curious feature of the Benchmark Model
illustrated vividly in Figure 5.8 is that we are living very close to the time of
matter–lambda equality (at least, as plotted on a logarithmic scale).



Figure 5.8 The scale factor a as a function of time t (measured in units of the Hubble time),
computed for the Benchmark Model. The dotted lines indicate the time of radiation–matter
equality, arm = 2.9 × 10−4, the time of matter–lambda equality, amΛ = 0.77, and the present
moment, a0 = 1.

Once a(t) is known, other properties of the Benchmark Model can be
computed readily. For instance, the left panel of Figure 5.9 shows the current
proper distance to a galaxy with redshift z. The heavy solid line is the result
for the Benchmark Model; for purposes of comparison, the result for a flat
lambda-only universe is shown as a dot-dash line and the result for a flat
matter-only universe is shown as the dotted line. In the limit z → ∞, the
proper distance dp(t0) approaches a limiting value dp → 3.20c/H0, in the case
of the Benchmark Model. Thus, the Benchmark Model has a finite horizon
distance,



Figure 5.9 The proper distance to a light source with redshift z, in units of the Hubble
distance, c/H0. The left panel shows the distance at the time of observation; the right panel
shows the distance at the time of emission. The bold solid line indicates the Benchmark
Model. For comparison, the dot-dash line indicates a flat, lambda-only universe, and the
dotted line a flat, matter-only universe.

(5.115)

If the Benchmark Model is a good description of our own universe, then we
can’t see objects more than 14 gigaparsecs away because light from them has
not yet had time to reach us. The right panel of Figure 5.9 shows dp(te), the
distance to a galaxy with observed redshift z at the time the observed photons
were emitted. For the Benchmark Model, dp(te) has a maximum for galaxies
with redshift z = 1.6, where dp(te) = 0.405c/H0.

When astronomers observe a distant galaxy, they ask the related, but not
identical, questions, “How far away is that galaxy?” and “How long has the
light from that galaxy been traveling?” In the Benchmark Model, or any other
model, we can answer the question “How far away is that galaxy?” by
computing the proper distance dp(t0). We can answer the question “How long
has the light from that galaxy been traveling?” by computing the lookback
time. If light emitted at time te is observed at time t0, the lookback time is
simply t0 − te. In the limit of very small redshifts, t0 − te ≈ z/H0. However, as
shown in Figure 5.10, at larger redshifts the relation between lookback time
and redshift becomes nonlinear. The exact dependence of lookback time on



redshift depends on the cosmological model used. For example, consider a
galaxy with redshift z = 2. In the Benchmark Model, the lookback time to that
galaxy is 10.5 Gyr; we are seeing a redshifted image of that galaxy as it was
10.5 billion years ago. In a flat, lambda-only universe, however, the lookback
time to a z = 2 galaxy is 15.8 Gyr, assuming  In a flat,
matter-dominated universe, the lookback time to a z = 2 galaxy is a mere 7.7
Gyr, with the same assumed Hubble constant.

Figure 5.10 The lookback time, t0 − te, for galaxies with observed redshift z. The Hubble
time is assumed to be  The bold solid line shows the result for the
Benchmark Model. For comparison, the dot-dash line indicates a flat, lambda-only
universe, and the dotted line a flat, matter-only universe.

The most distant galaxies that have been observed (at the time of writing)
are at a redshift z ≈ 10. Consider such a high-redshift galaxy. Using the
Benchmark Model, we find that the current proper distance to a galaxy with z
= 10 is dp(t0) = 2.18c/H0 = 9500 Mpc, about two-thirds of the current horizon
distance. The proper distance at the time the light was emitted was dp(te) =
dp(t0)/(1 + z) = 0.20c/H0 = 870 Mpc. The light we observe now was emitted
when the age of the universe was  this is less than



4% of the universe’s current age,  The lookback
time to a z = 10 galaxy in the Benchmark Model is thus 

 Astronomers are fond of saying, “A
telescope is a time machine.”12 As you look further and further out into the
universe, to objects with larger and larger values of dp(t0), you are looking
back to objects with smaller and smaller values of te. When you observe a
galaxy with a redshift z = 10, according to the Benchmark Model, you are
glimpsing the universe as it was as a youngster, less than half a billion years
old.

Exercises
5.1 A light source in a flat, single-component universe has a redshift z when

observed at a time t0. Show that the observed redshift z changes at a rate

(5.116)

For what values of w does the observed redshift increase with time?

5.2 Suppose you are in a flat, matter-only universe that has a Hubble
constant H0 = 68 km s−1 Mpc−1. You observe a galaxy with z = 1. How
long will you have to keep observing the galaxy to see its redshift
change by one part in 106? [Hint: use the result from the previous
problem.]

5.3 In a positively curved universe containing only matter (Ω0 > 1, κ = +1),
show that the present age of the universe is given by the formula

(5.117)

Assuming H0 = 68 km s−1 Mpc−1, plot t0 as a function of Ω0 in the range 1 ≤
Ω0 ≤ 3.



5.4 In a negatively curved universe containing only matter (Ω0 < 1, κ = −1),
show that the present age of the universe is given by the formula

(5.118)

Assuming H0 = 68 km s−1 Mpc−1, plot t0 as a function of Ω0 in the range 0 ≤
Ω0 ≤ 1.

5.5 One speculation in cosmology is that the dark energy may take the form
of “phantom energy” with an equation-of-state parameter w < −1.
Suppose that the universe is spatially flat and contains matter with a
density parameter Ωm,0, and phantom energy with a density parameter
Ωp,0 = 1 − Ωm,0 and equation-of-state parameter wp < −1. At what scale
factor amp are the energy density of phantom energy and matter equal?
Write down the Friedmann equation for this universe in the limit that a
≫ amp. Integrate the Friedmann equation to show that the scale factor a
goes to infinity at a finite cosmic time trip, given by the relation

(5.119)

This fate for the universe is called the “Big Rip.” Current observations of our
own universe are consistent with H0 = 68 km s−1 Mpc−1, Ωm,0 = 0.3, and wp =
−1.1. If these numbers are correct, how long do we have remaining until the
“Big Rip”?

5.6 Suppose you wanted to “pull an Einstein,” and create a static universe 
 in which the gravitational attraction of matter is exactly

balanced by the gravitational repulsion of dark energy with equation-of-
state parameter −1/3 < wq < −1 and energy density εq. What is the
necessary matter density (εm) required to produce a static universe,
expressed in terms of εq and wq? Will the curvature of this static



universe be negative or positive? What will be its radius of curvature,
expressed in terms of εq and wq?

5.7 Consider a positively curved universe containing only matter (the “Big
Crunch” model discussed in Section 5.4.1). At some time t0 > tcrunch/2,
during the contraction phase of this universe, an astronomer named
Elbbuh Niwde discovers that nearby galaxies have blueshifts (−1 ≤ z <
0) proportional to their distance. He then measures H0 and Ω0, finding
H0 < 0 and Ω0 > 1. Given H0 and Ω0, how long a time will elapse
between Dr. Niwde’s observations at t = t0 and the final Big Crunch at t
= tcrunch? What is the highest amplitude blueshift that Dr. Niwde is able
to observe? What is the lookback time to an object with this blueshift?

5.8 Consider an expanding, positively curved universe containing only a
cosmological constant (Ω0 = ΩΛ,0 > 1). Show that such a universe
underwent a “Big Bounce” at a scale factor

(5.120)

and that the scale factor as a function of time is

(5.121)

where tbounce is the time at which the Big Bounce occurred. What is the time
t0 − tbounce that has elapsed since the Big Bounce, expressed as a function of
H0 and Ω0?

5.9 A universe is spatially flat, and contains both matter and a cosmological
constant. For what value of Ωm,0 is t0 exactly equal to 

5.10 In the Benchmark Model, what is the total mass of all the matter within
our horizon? What is the total energy of all the photons within our horizon?
How many baryons are within the horizon?



1 The Sun, for instance, is emitting 1045 photons every second, and thus acts as a glaring
example of photon non-conservation.

2 Note that the Benchmark Model is defined to be spatially flat.
3 Such an empty, negatively curved, expanding universe is sometimes called a Milne

universe, after the cosmologist E. A. Milne, who pioneered its study in the 1930s.
4 If a universe contains nothing, there will be no observers in it to detect the expansion.
5 More technically, this is what’s called the particle horizon distance; we’ll continue to

call it the horizon distance, for short.
6 Such a universe is sometimes called an Einstein–de Sitter universe, after Albert Einstein

and the cosmologist Willem de Sitter, who jointly wrote a paper on flat, matter-
dominated universes in 1932.

7 Such a universe is sometimes called a de Sitter universe, after Willem de Sitter, who
pioneered its study in the year 1917.

8 We can’t rule out the possibility that the dark energy has w ≠ −1, or the possibility that
the universe contains even more exotic contributions to its energy density (w =?). These
possible developments are left as an exercise for the reader.

9 Interestingly, this quote is from Eliot’s poem The Hollow Men, written, for the most
part, in 1924, the year when Friedmann published his second paper on the expansion of
the universe. However, this coincidence seems to be just that – a coincidence. Eliot did
not keep up to date on the technical literature of cosmology.

10 This is from Frost’s poem Fire and Ice, first published in Harper’s Magazine in
December 1920. Unlike T. S. Eliot, Frost was keenly interested in astronomy, and
frequently wrote poems on astronomical themes.

11 A loitering universe is sometimes referred to as a Lemaître universe, since Georges
Lemaître discussed, in his 1927 paper on the expanding universe, the possibility of a
loitering stage extending into the indefinitely distant past.

12 Or, as William Herschel phrased it over two centuries ago, “A telescope with a power of
penetrating into space...has also, as it may be called, a power of penetrating into time
past.”



6

Measuring Cosmological Parameters

Cosmologists would like to know the scale factor a(t) for the universe. For a
model universe whose contents are known with precision, the scale factor can
be computed from the Friedmann equation. Finding a(t) for the real universe,
however, is much more difficult. The scale factor is not directly observable; it
can only be deduced indirectly from the imperfect and incomplete
observations that we make of the universe around us.

In the previous chapter, I pointed out that if we knew the energy density ε
for each component of the universe, we could use the Friedmann equation to
find the scale factor a(t). The argument works in the other direction, as well;
if we could determine a(t) from observations, we could use that knowledge to
find ε for each component. Let’s see, then, what constraints we can put on the
scale factor by making observations of distant astronomical objects.

6.1 “A Search for Two Numbers”
Since determining the exact functional form of a(t) is difficult, it is useful,
instead, to do a Taylor series expansion for a(t) around the present moment.
The complete Taylor series is

(6.1)

To exactly reproduce an arbitrary function a(t) for all values of t, an infinite
number of terms is required in the expansion. However, the usefulness of a
Taylor series expansion resides in the fact that if a doesn’t fluctuate wildly
with t, using only the first few terms of the expansion gives a good
approximation in the immediate vicinity of t0. The scale factor a(t) is a good



candidate for a Taylor expansion. The different model universes examined in
the previous two chapters all had smoothly varying scale factors, and there’s
no evidence that the real universe has a wildly oscillating scale factor.

Keeping the first three terms of the Taylor expansion, the scale factor in
the recent past and the near future can be approximated as

(6.2)

Dividing by the current scale factor, a(t0),

(6.3)

Using the normalization a(t0) = 1, this expansion for the scale factor is
customarily written in the form

(6.4)

In Equation 6.4, the parameter H0 is our old acquaintance the Hubble
constant,

(6.5)

and the parameter q0 is a dimensionless number called the deceleration
parameter, defined as

(6.6)



Note the choice of sign in defining q0. A positive value of q0 corresponds to 
 meaning that the universe’s expansion is decelerating (that is, the

relative velocity of any two points is decreasing). A negative value of q0
corresponds to  meaning that the relative velocity of any two points is
increasing with time. The choice of sign for q0, and the fact that it’s named
the deceleration parameter, is because it was first defined during the mid-
1950s, when the limited information available favored a matter-dominated
universe with  If the universe contains a sufficiently large cosmological
constant, however, the deceleration parameter q0 can have either sign.

The Taylor expansion of Equation 6.4 is physics-free. It is simply a
mathematical description of how the universe expands at times t ∼ t0, and
says nothing at all about what forces act to accelerate the expansion (to take a
Newtonian viewpoint of the physics involved). In a famous 1970 review
article, the observational cosmologist Allan Sandage described all of
cosmology as “a search for two numbers.” Those two numbers were H0 and
q0. Although the scope of cosmology has widened considerably since
Sandage wrote his article, it is still possible to describe the recent expansion
of the universe in terms of H0 and q0.

Although H0 and q0 are themselves free of the theoretical assumptions
underlying the Friedmann and acceleration equations, we can use the
acceleration equation to predict what q0 will be in a given model universe. If
our model universe contains N components, each with a different value of the
equation-of-state parameter wi, the acceleration equation can be written

(6.7)

Divide each side of the acceleration equation by the square of the Hubble
parameter H(t) and change sign:

(6.8)



The quantity in square brackets in Equation 6.8 is the inverse of the critical
energy density εc. Thus, we can rewrite the acceleration equation in the form

(6.9)

Evaluating Equation 6.9 at the present moment, t = t0, tells us the relation
between the deceleration parameter q0 and the density parameters of the
different components of the universe:

(6.10)

For a universe containing radiation, matter, and a cosmological constant,

(6.11)

Such a universe will currently be accelerating outward (q0 < 0) if ΩΛ,0 > Ωr,0
+ Ωm,0/2. The Benchmark Model, for instance, has q0 ≈ −0.53.

In principle, determining H0 should be easy. For small redshifts, the
relation between a galaxy’s distance d and its redshift z is linear Equation
(2.8):

(6.12)

Thus, if you measure the distance d and redshift z for a large sample of
galaxies, and fit a straight line to a plot of cz versus d, the slope of the plot
gives you the value of H0.1 In practice, the distance to a galaxy is not only
difficult to measure, but also somewhat difficult to define. In Section 3.5, the
proper distance dp(t) between two points was defined as the length of the
spatial geodesic between the points when the scale factor is fixed at the value



a(t). The proper distance is perhaps the most straightforward definition of the
spatial distance between two points in an expanding universe. Moreover,
there is a helpful relation between scale factor and proper distance. If we
observe, at time t0, light that was emitted by a distant galaxy at time te, the
current proper distance to that galaxy is (Equation 5.33):

(6.13)

For the model universes examined in Chapter 5, we knew the exact functional
form of a(t), and hence could exactly compute dp(t0) for a galaxy of any
redshift. If we have only partial knowledge of the scale factor, in the form of
the Taylor expansion of Equation 6.4, we may use the expansion

(6.14)

in Equation 6.13. Including the two lowest-order terms in the lookback time,
t0 − te, we find that the proper distance to the galaxy is

(6.15)

The first term in the above equation, c(t0 − te), is what the proper distance
would be in a static universe – the lookback time times the speed of light.
The second term is a correction due to the expansion of the universe during
the time the light was traveling.

Equation 6.15 would be extremely useful if the photons from distant
galaxies carried a stamp telling us the lookback time, t0 − te. They don’t;
instead, they carry a stamp telling us the scale factor a(te) at the time the light
was emitted. The observed redshift z of a galaxy, remember, is



(6.16)

Using Equation 6.14, we may write an approximate relation between redshift
and lookback time:

(6.17)

Inverting Equation 6.17 to give the lookback time as a function of redshift,
we find

(6.18)

Substituting Equation 6.18 into Equation 6.15 gives us an approximate
relation for the current proper distance to a galaxy with redshift z:

(6.19)

The linear Hubble relation dp ∝ z thus holds true only in the limit z ≪
2/(1+q0). If q0 > −1, then the proper distance to a galaxy of moderate redshift
(z ∼ 0.1, say) is less than would be predicted from the linear Hubble relation.

6.2 Luminosity Distance
Unfortunately, the current proper distance to a galaxy, dp(t0), is not a
measurable property. If you tried to measure the distance to a galaxy with a
tape measure, for instance, the distance would be continuously increasing as
you extended the tape. To measure the proper distance at time t0, you would
need a tape measure that could be extended with infinite speed; alternatively,
you would need to stop the expansion of the universe at its current scale



factor while you measured the distance at your leisure. Neither of these
alternatives is physically possible.

Since cosmology is ultimately based on observations, if we want to find
the distance to a galaxy, we need some way of computing a distance from
that galaxy’s observed properties. In devising ways of computing the distance
to galaxies, astronomers have found it useful to adopt and adapt the
techniques used to measure shorter distances. Let’s examine, then, the
techniques used to measure relatively short distances. Within the solar
system, astronomers measure the distance to planets by reflecting radar
signals from them. If δt is the time taken for a photon to complete the round-
trip, then the distance to the reflecting body is d = c δt/2. (Since the relative
speeds of objects within the solar system are much smaller than c, the
corrections due to relative motion during the time δt are minuscule.) The
accuracy with which distances have been determined with this technique is
impressive; the length of the astronomical unit, for instance, is 1 AU = 149
597 870.7 km. The radar technique is useful only within the solar system.
Beyond ∼ 10 AU, the reflected radio waves are too faint to detect.

A favorite method for determining distances to other stars within our
galaxy is the method of trigonometric parallax. When a star is observed from
two points separated by a distance b, the star’s apparent position will shift by
an angle θ. If the baseline of observation is perpendicular to the line of sight
to the star, the parallax distance will be

(6.20)

Measuring the distances to stars using the Earth’s orbit (b = 2 AU) as a
baseline is a standard technique. Since the size of the Earth’s orbit is known
with great accuracy from radar measurements, the accuracy with which the
parallax distance can be determined is limited by the accuracy with which the
parallax angle θ can be measured. The Gaia satellite, launched by the
European Space Agency in 2013, was designed to measure the parallax of
stars with an error as small as ∼ 10 microarcseconds. However, to measure θ
for a galaxy 100 Mpc away, an error of < 0.01 microarcseconds would be
required, using the Earth’s orbit as a baseline. The trigonometric parallaxes of
galaxies at cosmological distances are too small to be measured with current



technology.
Let’s focus on the properties that we can measure for objects at

cosmological distances. We can measure the flux of light, f, from the object,
in units of watts per square meter. The complete flux, integrated over all
wavelengths of light, is called the bolometric flux. The adjective
“bolometric” is a reference to the scientific instrument known as a bolometer,
an extremely sensitive thermometer capable of detecting electromagnetic
radiation over a wide range of wavelengths. The bolometer was invented
around the year 1880 by the astronomer Samuel Langley, who used it to
measure solar radiation. As expressed more poetically in an anonymous
limerick:

Oh, Langley devised the bolometer:
It’s really a kind of thermometer
Which measures the heat
From a polar bear’s feet
At a distance of half a kilometer.2

More prosaically, given the technical difficulties of measuring the true
bolometric flux, the flux over a limited range of wavelengths is measured. If
the light from the object has emission or absorption lines, we can measure the
redshift, z. If the object is an extended source rather than a point of light, we
can measure its angular diameter, δθ.

One way of using measured properties to assign a distance is the standard
candle method. A standard candle is an object whose luminosity L is known.
For instance, if some class of astronomical object had luminosities that were
the same throughout all of spacetime, they would act as excellent standard
candles – if their unique luminosity L were known. If you know, by some
means or other, the luminosity of an object, then you can use its measured
flux f to compute a function known as the luminosity distance, defined as

(6.21)

The function dL is called a “distance” because its dimensionality is that of a
distance, and because it is what the proper distance to the standard candle
would be if the universe were static and Euclidean. In a static Euclidean



universe, propagation of light follows the inverse square law: f = L/(4πd2).
Suppose, though, that you are in a universe described by a Robertson–

Walker metric Equation (3.41):

(6.22)

with

(6.23)

You are at the origin. At the present moment, t = t0, you see light that was
emitted by a standard candle at comoving coordinate location (r, θ, ϕ) at a
time te (Figure 6.1). The photons emitted at time te are, at the present
moment, spread over a sphere of proper radius dp(t0) = r and proper surface
area Ap(t0). If space is flat (κ = 0), then the proper area of the sphere is given
by the Euclidean relation Ap(t0) = 4πdp(t0)2 = 4πr2. More generally, however,

(6.24)

Figure 6.1 An observer at the origin observes a standard candle, of known luminosity L, at
comoving coordinate location (r, θ, ϕ).

When space is positively curved, Ap(t0) < 4πr2, and the photons are spread



over a smaller area than they would be in flat space. When space is
negatively curved, Ap(t0) > 4πr2, and photons are spread over a larger area
than they would be in flat space.

In addition to these geometric effects, which apply even in a static
universe, the expansion of the universe causes the observed flux of light from
a standard candle of redshift z to be decreased by a factor of (1 + z)−2. First,
the expansion of the universe causes the energy of each photon from the
standard candle to decrease. If a photon starts with an energy Ee = hc/λe when
the scale factor is a(te), by the time we observe it, when the scale factor is
a(t0) = 1, the wavelength will have grown to

(6.25)

and the energy will have fallen to

(6.26)

Second, thanks to the expansion of the universe, the time between photon
detections will be greater. If two photons are emitted in the same direction
separated by a time interval δte, the proper distance between them will
initially be c(δte); by the time we detect the photons at time t0, the proper
distance between them will be stretched to c(δte)(1 + z), and we will detect
them separated by a time interval δt0 = δte(1 + z).

The net result is that in an expanding, spatially curved universe, the
relation between the observed flux f and the luminosity L of a distant light
source is

(6.27)

and the luminosity distance is



(6.28)

The available evidence indicates that our universe is nearly flat, with a radius
of curvature R0 much larger than the current horizon distance dhor(t0). Objects
with finite redshift are at proper distances smaller than the horizon distance,
and hence much smaller than the radius of curvature. Thus, it is safe to make
the approximation r ≪ R0, implying Sκ (r) ≈ r. With our assumption that
space is very close to being flat, the relation between the luminosity distance
and the current proper distance becomes very simple:

(6.29)

Thus, even if space is perfectly flat, if you estimate the distance to a standard
candle by using a naïve inverse square law, you will overestimate the actual
proper distance by a factor (1 + z), where z is the standard candle’s redshift.

Figure 6.2 shows the luminosity distance dL as a function of redshift for
the Benchmark Model and for two other flat universes, one dominated by
matter and one dominated by a cosmological constant. When z ≪ 1, the
current proper distance may be approximated as

(6.30)



Figure 6.2 Luminosity distance of a standard candle with observed redshift z, in units of
the Hubble distance, c/H0. The bold solid line gives the result for the Benchmark Model.
For comparison, the dot-dash line indicates a flat, lambda-only universe, and the dotted line
a flat, matter-only universe.

In a nearly flat universe, the luminosity distance may thus be approximated as

(6.31)

6.3 Angular-diameter Distance
The luminosity distance dL is not the only distance measure that can be
computed using the observable properties of cosmological objects. Suppose
that instead of a standard candle, you observed a standard yardstick. A
standard yardstick is an object whose proper length ℓ is known. In many
cases, it is convenient to choose as your yardstick an object that is tightly
bound together, by gravity or duct tape or some other influence, and hence is
not expanding along with the universe as a whole.



Suppose a yardstick of constant proper length ℓ is aligned perpendicular to
your line of sight, as shown in Figure 6.3. You measure an angular distance
δθ between the ends of the yardstick, and a redshift z for the light that the
yardstick emits. If δθ ≪ 1, and if you know the length ℓ of the yardstick, you
can compute a distance to the yardstick using the small-angle formula

(6.32)

Figure 6.3 An observer at the origin observes a standard yardstick, of known proper length
ℓ, at comoving coordinate distance r.

This function of ℓ and δθ is called the angular-diameter distance. The
angular-diameter distance is equal to the proper distance to the yardstick if
the universe is static and Euclidean.

In general, though, if the universe is expanding or curved, the angular-
diameter distance will not be equal to the current proper distance. Suppose
you are in a universe described by the Robertson–Walker metric given in
Equation 6.22. Choose your comoving coordinate system so that you are at
the origin. The yardstick is at a comoving coordinate distance r. At a time te,
the yardstick emitted the light that you observe at time t0. The comoving
coordinates of the two ends of the yardstick, at the time the light was emitted,
were (r, θ1, ϕ) and (r, θ2, ϕ). As the light from the yardstick moves toward the
origin, it travels along geodesics with θ = constant and ϕ = constant. Thus,
the angular size you measure for the yardstick will be δθ = θ2 − θ1. The
distance ds between the two ends of the yardstick, measured at the time te



when the light was emitted, can be found from the Robertson–Walker metric:

(6.33)

However, for a standard yardstick whose length ℓ is known, we can set ds =
ℓ, and thus find that

(6.34)

Thus, the angular-diameter distance dA to a standard yardstick is

(6.35)

Comparison with Equation 6.28 shows that the relation between the angular-
diameter distance and the luminosity distance is

(6.36)

Thus, if you observe a redshifted object that is both a standard candle and a
standard yardstick, the angular-diameter distance that you compute for the
object will be smaller than the luminosity distance. Moreover, if the universe
is spatially flat,

(6.37)

In a flat universe, therefore, if you compute the angular-diameter distance dA
of a standard yardstick, it isn’t equal to the current proper distance dp(t0);
rather, it is equal to the proper distance at the time the light from the object
was emitted: 



Figure 6.4 shows the angular-diameter distance dA for the Benchmark
Model, and for two other spatially flat universes, one dominated by matter
and one dominated by a cosmological constant. [Since dA is, for these flat
universes, equal to dp(te), Figure 6.4 is simply a replotting of the right panel
in Figure 5.9.] When z ≪ 1, the approximate value of dA is given by the
expansion

(6.38)

Figure 6.4 Angular-diameter distance of a standard yardstick with observed redshift z, in
units of the Hubble distance, c/H0. The bold solid line gives the result for the Benchmark
Model. For comparison, the dot-dash line indicates a flat, lambda-only universe, and the
dotted line a flat, matter-only universe.

Thus, comparing Equations 6.30, 6.31, and 6.38, we find that in the limit z →
0, dA ≈ dL ≈ dp(t0) ≈ (c/H0)z. However, the state of affairs is very different in
the limit z → ∞. In models with a finite horizon size, dp(t0) → dhor(t0) as z →
∞. The luminosity distance to highly redshifted objects, in this case, diverges



as z → ∞, with

(6.39)

However, the angular-diameter distance to highly redshifted objects
approaches zero as z → ∞, with

(6.40)

In model universes other than the lambda-only model, the angular-diameter
distance dA has a maximum for standard yardsticks at some critical redshift
zc. For instance, the Benchmark Model has a critical redshift zc = 1.6, where
dA(max) = 0.405c/H0 = 1770 Mpc. If the universe were full of glow-in-the-
dark yardsticks, all of the same size ℓ, their angular size δθ would decrease
with redshift out to z = zc, but then would increase at larger redshifts. The sky
would be full of big, faint, redshifted yardsticks.

In principle, standard yardsticks, like standard candles, can be used to
measure cosmological parameters such as H0, ΩΛ,0, and Ωm,0. In practice, the
use of standard yardsticks to determine cosmological parameters was long
plagued with observational difficulties. For instance, a standard yardstick
must have an angular size large enough to be resolved by your telescope. A
yardstick of physical size ℓ will have its angular size δθ minimized when it is
at the critical redshift zc. For the Benchmark Model,

(6.41)

Both galaxies and clusters of galaxies are large enough to be useful standard
candles. Unfortunately for cosmologists, galaxies and clusters of galaxies do
not have sharply defined edges, so assigning a particular angular size δθ, and
a corresponding physical size ℓ, to these objects is a somewhat tricky task.
Moreover, galaxies and clusters of galaxies are not isolated, rigid yardsticks
of fixed length. Galaxies tend to become larger with time as they undergo



mergers with their neighbors. Clusters, too, tend to become larger with time,
as galaxies fall into them. Correcting for these evolutionary trends is a
difficult task. Given the historical difficulties involved in using standard
yardsticks to determine cosmological parameters, let’s first look at how
standard candles can be used to determine H0.

6.4 Standard Candles and H0

Using standard candles to determine the Hubble constant has a long and
honorable history; it’s the method used by Hubble himself. The recipe for
finding the Hubble constant is a simple one:

Identify a population of standard candles with luminosity L.
Measure the redshift z and flux f for each standard candle.
Compute dL = (L/4πf)1/2 for each standard candle.
Plot cz versus dL.
Measure the slope of the cz versus dL relation when z ≪ 1; this gives
H0.

As with the apocryphal recipe for rabbit stew that begins “First catch your
rabbit,” the hardest step is the first one. A good standard candle is hard to
find. For cosmological purposes, a standard candle should be bright enough
to be detected at large redshifts. It should also have a luminosity that is well
determined.3

One time-honored variety of standard candle is the class of Cepheid
variable stars. Cepheids, as they are known, are highly luminous supergiant
stars, with mean luminosities in the range L = 400 → 40 000 L⊙. Cepheids are
pulsationally unstable. As they pulsate radially, their luminosity varies in
response, partially due to the changes in their surface area, and partially due
to the changes in the surface temperature as the star pulsates. The pulsational
periods, as reflected in the observed brightness variations of the star, lie in the
range P = 1.5 → 60 days.

On the face of it, Cepheids don’t seem sufficiently standardized to be
standard candles; their mean luminosities range over two orders of
magnitude. How can you tell whether you are looking at an intrinsically faint



Cepheid (L ≈ 400 L⊙) or at an intrinsically bright Cepheid (L ≈ 40 000 L⊙) ten
times farther away? The key to calibrating Cepheids was discovered by
Henrietta Leavitt, at Harvard College Observatory. In the years prior to
World War I, Leavitt was studying variable stars in the Large and Small
Magellanic Clouds, a pair of relatively small satellite galaxies orbiting our
own galaxy. For each Cepheid in the Small Magellanic Cloud (SMC), she
measured the period P by finding the time between maxima in the observed
brightness, and found the mean flux f, averaged over one complete period.
She noted that there was a clear relation between P and f, with stars having
the longest period of variability also having the largest flux. Since the depth
of the SMC, front to back, is small compared to its distance from us, she was
justified in assuming that the difference in mean flux for the Cepheids was
due to differences in their mean luminosity, not differences in their
luminosity distance. Leavitt had discovered a period–luminosity relation for
Cepheid variable stars. If the same period–luminosity relation holds true for
all Cepheids, in all galaxies, then Cepheids can act as a standard candle.

Suppose, for instance, you find a Cepheid star in the Large Magellanic
Cloud (LMC) and another in M31. They both have a pulsational period of 10
days, so you assume, from the period–luminosity relation, that they have the
same mean luminosity L. By careful measurement, you determine that

(6.42)

Thus, you conclude that the luminosity distance to M31 is greater than that to
the LMC by a factor

(6.43)

(In practice, given the intrinsic scatter in the period–luminosity relation, and
the inevitable error in measuring fluxes, astronomers don’t rely on a single
Cepheid in each galaxy. Rather, they measure f and P for as many Cepheids
as possible in each galaxy, then find the ratio of luminosity distances that



makes the period– luminosity relations for the two galaxies coincide.)
Note that if you only know the relative fluxes of the two Cepheids, and

not their luminosity L, you will only know the relative distances of M31 and
the LMC. To fix an absolute distance to M31, to the LMC, and to other
galaxies containing Cepheids, you need to know the luminosity L for a
Cepheid of a given period P. If, for instance, you could measure the parallax
distance dπ to a Cepheid within our own galaxy, you could then compute its
luminosity  and use it to normalize the period–luminosity relation
for Cepheids.4 Unfortunately, Cepheids are rare stars; only the very nearest
Cepheids in our galaxy have had their distances measured accurately. The
nearest Cepheid is Polaris, as it turns out, at dπ = 130 ± 10 pc. The next
nearest is δ Cephei (the prototype after which all Cepheids are named), at dπ
= 270 ± 10 pc. Historically, given the lack of Cepheid parallaxes,
astronomers have relied on alternative methods of normalizing the period–
luminosity relation for Cepheids. The most usual method involved finding the
distance to the Large Magellanic Cloud by secondary methods, then using
this distance to compute the mean luminosity of the LMC Cepheids. The
current consensus is that the Large Magellanic Cloud has a luminosity
distance dL = 50 ± 2 kpc, implying a distance to M31 of dL = 760 ± 30 kpc.

The fluxes and periods of Cepheids can be accurately measured out to
luminosity distances dL ∼ 30 Mpc. Observation of Cepheid stars in the Virgo
cluster of galaxies, for instance, has yielded a distance dL(Virgo) = 300
dL(LMC) = 15 Mpc. One of the motivating reasons for building the Hubble
Space Telescope in the first place was to use Cepheids to determine H0. The
net result of the Hubble Key Project to measure H0 is displayed in Figure 2.5,
showing that the Cepheid data are best fitted with a Hubble constant of H0 =
75 ± 8 kms−1 Mpc−1.

There is a hidden difficulty involved in using Cepheid stars to determine
H0. Cepheids can take you out only to a distance dL ∼ 30 Mpc; on this scale,
the universe cannot be assumed to be homogeneous and isotropic. In fact, the
Local Group is gravitationally attracted toward the Virgo cluster, causing it to
have a peculiar motion in that direction. It is estimated, from dynamical
models, that the recession velocity cz that we measure for the Virgo cluster is
250 km s−1 less than it would be if the universe were perfectly homogeneous.
The plot of cz versus dL given in Figure 2.5 uses recession velocities that are



corrected for this “Virgocentric flow,” as it is called.

6.5 Standard Candles and Acceleration
To determine the value of H0 without having to worry about Virgocentric
flow and other peculiar velocities, we need to determine the luminosity
distance to standard candles with dL > 100 Mpc, or z > 0.02. To determine the
acceleration of the universe, we need to view standard candles for which the
relation between dL and z deviates significantly from the linear relation that
holds true at lower redshifts. In terms of H0 and q0, the luminosity distance at
small redshift is, from Equation 6.31,

(6.44)

At a redshift z = 0.2, for instance, the luminosity distance dL in the
Benchmark Model (with q0 = −0.53) is 5 percent larger than dL in an empty
universe (with q0 = 0).

For a standard candle to be seen at dL > 1000Mpc, it must be very
luminous. In recent years, the standard candle of choice among cosmologists
has been type Ia supernovae. A supernova may be loosely defined as an
exploding star. Early in the history of supernova studies, when little was
known about their underlying physics, supernovae were divided into two
classes, on the basis of their spectra. Type I supernovae contain no hydrogen
absorption lines in their spectra; type II supernovae contain strong hydrogen
absorption lines. Gradually, it was realized that all type II supernovae are the
same species of beast; they are massive stars (M > 8 M⊙) whose cores
collapse to form a black hole or neutron star when their nuclear fuel is
exhausted. During the rapid collapse of the core, the outer layers of the star
are thrown off into space. Type I supernovae are actually two separate
species, called type Ia and type Ib. Type Ib supernovae, it is thought, are
massive stars whose cores collapse after the hydrogen-rich outer layers of the
star have been blown away in strong stellar winds. Thus, type Ib and type II
supernovae are driven by very similar mechanisms – their differences are



superficial, in the most literal sense. Type Ia supernovae, however, are
something completely different. They begin as white dwarfs; that is, stellar
remnants that are supported against gravity by the quantum mechanical effect
known as electron degeneracy pressure. The maximum mass at which a white
dwarf can be supported against its self-gravity is called the Chandrasekhar
mass; the value of the Chandrasekhar mass is M ≈ 1.4 M⊙. A white dwarf can
go over this limit by merging with another white dwarf, or by accreting gas
from a stellar companion. If the Chandrasekhar limit is approached or
exceeded, the white dwarf starts to collapse until its increased density triggers
a runaway nuclear fusion reaction. The entire white dwarf becomes a fusion
bomb, blowing itself to smithereens; unlike type II supernovae, type Ia
supernovae do not leave a condensed stellar remnant behind.

Within our galaxy, type Ia supernovae occur roughly once per century, on
average. Although type Ia supernovae are not frequent occurrences locally,
they are extraordinarily luminous, and hence can be seen to large distances.
The luminosity of an average type Ia supernova, at peak brightness, is L = 4 ×
109 L⊙; that’s 100 000 times more luminous than even the brightest Cepheid.
For a few days, a type Ia supernova in a moderately bright galaxy can
outshine all the other stars in the galaxy combined. Since moderately bright
galaxies can be seen at z ∼ 1, this means that type Ia supernovae can also be
seen at z ∼ 1.

So far, type Ia supernovae sound like ideal standard candles; very
luminous and all produced by the same mechanism. There’s one
complication, however. Observation of supernovae in galaxies whose
distances have been well determined by Cepheids reveals that type Ia
supernovae do not have identical luminosities. Instead of all having L = 4 ×
109 L⊙, their peak luminosities lie in the fairly broad range L ≈ (3 → 5) × 109

L⊙. However, it has also been noted that the peak luminosity of a type Ia
supernova is tightly correlated with the shape of its light curve. Type Ia
supernovae with luminosities that shoot up rapidly and decline rapidly are
less luminous than average at their peak; supernovae with luminosities that
rise and fall in a more leisurely manner are more luminous than average.
Thus, just as the period of a Cepheid tells you its luminosity, the rise and fall
time of a type Ia supernova tells you its peak luminosity.

At the end of the 20th century, two research teams, the “Supernova
Cosmology Project” and the “High-z Supernova Search Team,” conducted



searches for supernovae in distant galaxies, using the observed fluxes of the
supernovae to constrain the acceleration of the expansion of the universe. To
present the supernova results, I will have to introduce the “magnitude”
system used by astronomers to express fluxes and luminosities. The
magnitude system, like much else in astronomy, has its roots in ancient
Greece. The Greek astronomer Hipparchus, in the second century BC, divided
the stars into six classes, according to their apparent brightness. The brightest
stars were of “first magnitude,” the faintest stars visible to the naked eye were
of “sixth magnitude,” and intermediate stars were ranked as second, third,
fourth, and fifth magnitude. Long after the time of Hipparchus, it was
realized that the response of the human eye is roughly logarithmic, and that
stars of the first magnitude have fluxes (at visible wavelengths) about 100
times greater than stars of the sixth magnitude. On the basis of this
realization, the magnitude system was placed on a more rigorous
mathematical basis.

Nowadays, the bolometric apparent magnitude of a light source is defined
in terms of the source’s bolometric flux as

(6.45)

where the reference flux fx is set at the value fx = 2.53×10−8 watt m−2. Thanks
to the negative sign in the definition, a small value of m corresponds to a
large flux f. For instance, the flux of sunlight at the Earth’s location is f =
1361 watts m−2; the Sun thus has a bolometric apparent magnitude of m =
−26.8. The choice of reference flux fx constitutes a tip of the hat to
Hipparchus, since for stars visible to the naked eye it typically yields 0 < m <
6.

The bolometric absolute magnitude of a light source is defined as the
apparent magnitude that it would have if it were at a luminosity distance of dL
= 10 pc. Thus, a light source with luminosity L has a bolometric absolute
magnitude

(6.46)

where the reference luminosity is Lx = 78.7 L⊙, since that is the luminosity of



an object that produces a flux fx = 2.53 × 10−8 watt m−2 when viewed from a
distance of 10 parsecs. The bolometric absolute magnitude of the Sun is thus
M = 4.74. Although the system of apparent and absolute magnitudes seems
strange to the uninitiated, the apparent magnitude is really nothing more than
a logarithmic measure of the flux, and the absolute magnitude is a
logarithmic measure of the luminosity.

Given the definitions of apparent and absolute magnitude, the relation
between an object’s apparent magnitude and its absolute magnitude can be
written in the form

(6.47)

where dL is the luminosity distance to the light source. If the luminosity
distance is given in units of megaparsecs, this relation becomes

(6.48)

Since astronomers frequently quote fluxes and luminosities in terms of
apparent and absolute magnitudes, they find it convenient to quote luminosity
distances in terms of the distance modulus to a light source. The distance
modulus is defined as m − M, and is related to the luminosity distance by the
relation

(6.49)

The distance modulus of the Large Magellanic Cloud, for instance, at dL =
0.050 Mpc, is m − M = 18.5. The distance modulus of the Virgo cluster, at dL
= 15Mpc, is m − M = 30.9. When z ≪ 1, the luminosity distance to a light
source is



(6.50)

Substituting this relation into Equation 6.49, we have an equation that gives
the relation between distance modulus and redshift at low redshift:

(6.51)

For a population of standard candles with known luminosity L (and hence of
known bolometric absolute magnitude M), we measure the flux f (or
equivalently the bolometric apparent magnitude m) and the redshift z. In the
limit z → 0, a plot of m − M versus log z gives a straight line whose
amplitude at a fixed z tells us the value of H0. At slightly larger values of z,
the deviation of the plot from a straight line tells us whether the expansion of
the universe is speeding up or slowing down. At a given value of z, standard
candles have a lower flux in an accelerating universe (with q0 < 0) than in a
decelerating universe (with q0 > 0).

Figure 6.5 shows the plot of distance modulus versus redshift for a
compilation of actual supernova observations from a variety of sources. The
solid line running through the data is the result expected for the Benchmark
Model. At a redshift z ≈ 1, supernovae in the Benchmark Model are about 0.6
magnitudes fainter than they would be in a flat, matter-only universe; it was
the observed faintness of Type Ia supernovae at z > 0.3 that led to the
conclusion that the universe is accelerating. However, at z ≈ 1, supernovae in
the Benchmark Model are about 0.6 magnitudes brighter than they would be
in a flat, lambda-only universe. Thus, the observations of Type Ia supernovae
that tell us that the universe is accelerating also place useful upper limits on
the magnitude of the acceleration.



Figure 6.5 Distance modulus versus redshift for a set of 580 type Ia supernovae. The bold
solid line gives the expected relation for the Benchmark Model. For comparison, the dot-
dash line indicates a flat, lambda-only universe, and the dotted line a flat, matter-only
universe. [data from Suzuki et al. 2012, ApJ, 716, 85]

Figure 6.6 shows the results of fitting the supernova data with different
model universes; these models contain both matter and a cosmological
constant, but are not required to be spatially flat. The bold ellipse represents
the 95% confidence interval; that is, given the available set of supernova data,
there is a 95% chance that the plotted ellipse contains the true values of Ωm,0
and ΩΛ,0. Notice from the plot that decelerating universes with q0 > 0 (below
the dotted line) are strongly excluded by the supernova data, as are Big
Crunch universes and Big Bounce universes. However, the supernova data,
taken by themselves, are consistent with positively curved or negatively
curved universes, as well as with a flat universe. We will see in Chapter 8
how observations of the cosmic microwave background combine with the
supernova results to suggest that we live in a universe that is both
accelerating and spatially flat, with Ωm,0 ∼ 0.3 and ΩΛ,0 ∼ 0.7.



Figure 6.6 The values of Ωm,0 and ΩΛ,0 that best fit the supernova data. The bold elliptical
contour represents the 95% confidence interval. For reference, the dashed line represents
flat universes, and the dotted line represents coasting (q0 = 0) universes: compare to Figure
5.6. [Anže Slosar & José Alberto Vázquez, Brookhaven National Laboratory]

Exercises
6.1 Suppose that a polar bear’s foot has a luminosity of L = 10 watts. What

is the bolometric absolute magnitude of the bear’s foot? What is the
bolometric apparent magnitude of the foot at a luminosity distance of dL
= 0.5 km? If a bolometer can detect the bear’s foot at a maximum
luminosity distance of dL = 0.5 km, what is the maximum luminosity
distance at which it could detect the Sun? What is the maximum
luminosity distance at which it could detect a supernova with L = 4 ×
109 L⊙?

6.2 Suppose that a polar bear’s foot has a diameter of ℓ = 0.16 m. What is
the angular size δθ of the foot at an angular-diameter distance of dA =
0.5 km? In the Benchmark Model, what is the minimum possible



angular size of the polar bear’s foot?
6.3 Suppose that you are in a spatially flat universe containing a single

component with a unique equation-of-state parameter w. What are the
current proper distance dP(t0), the luminosity distance dL, and the
angular-diameter distance dA as a function of z and w? At what redshift
will dA have a maximum value? What will this maximum value be, in
units of the Hubble distance?

6.4 Verify that Equation 6.51 is correct in the limit of small z. (You will
probably want to use the relation log10(1 + x) ≈ 0.4343 ln(1 + x) ≈
0.4343x in the limit |x| ≪1.)

6.5 The surface brightness ∑ of an astronomical object is its observed flux
divided by its observed angular area; thus, ∑ ∝ f /(δθ)2. For a class of
objects that are both standard candles and standard yardsticks, what is ∑
as a function of redshift? Would observing the surface brightness of this
class of objects be a useful way of determining the value of the
deceleration parameter q0? Why or why not?

6.6 You observe a quasar at a redshift z = 5.0, and determine that the
observed flux of light from the quasar varies on a timescale δt0 = 3 days.
If the observed variation in flux is due to a variation in the intrinsic
luminosity of the quasar, what was the variation timescale δte at the time
the light was emitted? For the light from the quasar to vary on a
timescale δte, the bulk of the light must come from a region of physical
size R ≤ Rmax = c(δte). What is Rmax for the observed quasar? What is the
angular size of Rmax in the Benchmark Model?

6.7 Derive the relation Ap(t0) = 4πSκ (r)2, as given in Equation 6.24, starting
from the Robertson–Walker metric of Equation 6.22.

6.8 A spatially flat universe contains a single component with equation-of-
state parameter w. In this universe, standard candles of luminosity L are
distributed homogeneously in space. The number density of the standard
candles is n0 at t = t0, and the standard candles are neither created nor
destroyed. Show that the observed flux from a single standard candle at
redshift z is



(6.52)

when w ≠ −1/3. What is the corresponding relation when w = −1/3?
Show that the observed intensity (that is, the power per unit area per
steradian of sky) from standard candles with redshifts in the range z →
z+dz is

(6.53)

What will be the total intensity J of all standard candles integrated over
all redshifts? Explain why the night sky is of finite brightness even in
universes with w ≤ −1/3, which have an infinite horizon distance.

6.9 In the Benchmark Model, at what scale factor a did  [This
represents the moment when expansion switched from slowing down 

 to speeding up  Is this scale factor larger or smaller than
the scale factor amΛ at which the energy density of matter equaled the
energy density of the cosmological constant?

1 The peculiar velocities of galaxies cause a significant amount of scatter in the plot, but
by using a large number of galaxies, you can beat down the statistical errors. If you use
galaxies at d < 100 Mpc, you must also make allowances for the local inhomogeneity
and anisotropy.

2 The earliest version of this poem that I can find (in the May 1950 issue of Electronics)
refers to the polar bear’s seat, rather than its feet. I leave it to you to choose your favorite
bit of the bear’s anatomy.

3 A useful cautionary tale in this regard is the saga of Edwin Hubble. In the 1929 paper
that first demonstrated that dL ∝ z when z ≪ 1, Hubble underestimated the luminosity
distances to galaxies by a factor of ∼ 7 because he underestimated the luminosity of his
standard candles by a factor of ∼ 49.

4 Within our galaxy, which is not expanding, the parallax distance, the luminosity
distance, and the proper distance are identical.



7

Dark Matter

Cosmologists, over the years, have dedicated much time and effort to
determining the matter density of the universe. There are many reasons for
this obsession. First, the density parameter in matter, Ωm,0, is important in
determining the spatial curvature and expansion rate of the universe. Even if
the cosmological constant is nonzero, the matter content of the universe is not
negligible today, and was the dominant component in the fairly recent past.
Another reason for wanting to know the matter density of the universe is to
find out what the universe is made of. What fraction of the density is made of
stars, and other familiar types of baryonic matter? What fraction of the
density is made of dark matter? What constitutes the dark matter – cold
stellar remnants, black holes, exotic elementary particles, or some other
substance too dim for us to see? These questions, and others, have driven
astronomers to take a census of the universe, to find out what types of matter
it contains, and in what quantities.

We have already seen in the previous chapter one method of putting limits
on Ωm,0. The apparent magnitude (or flux) of type Ia supernovae as a function
of redshift is consistent with a flat universe having Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7.
However, neither Ωm,0 nor ΩΛ,0 is individually well-constrained by the
supernova observations. The supernova data are consistent with Ωm,0 = 0 if
ΩΛ,0 ≈ 0.3; they are also consistent with Ωm,0 = 0.45 if ΩΛ,0 ≈ 0.9. In order to
determine Ωm,0 more accurately, we will have to adopt alternate methods of
estimating the matter content of the universe.

7.1 Visible Matter
Some types of matter, such as stars, help astronomers to detect them by
broadcasting photons in all directions. Stars emit light primarily in the



infrared, visible, and ultraviolet range of the electromagnetic spectrum.
Suppose, for instance, you install a V-band filter on your telescope. Such a
filter allows photons in the wavelength range 500 nm < λ < 590 nm to pass
through. The “V” in V-band stands for “visual”; although your eyes can detect
the broader wavelength range 400 nm < λ < 700 nm, a V-band filter lets
through the green and yellow wavelengths of light to which your retina is
most sensitive. About 12 percent of the Sun’s luminosity can pass through a
V-band filter; thus, the Sun’s luminosity in the V band is L⊙,V ≈ 0.12L⊙ ≈ 4.6 ×
1025 watts.1

Surveys of galaxies reveal that in the local universe (out to d ∼ 0.1c/H0),
the luminosity density in the V band is

(7.1)

To convert a luminosity density into a mass density ρ⋆ of stars, we need to
know the mass-to-light ratio of the stars. If all stars were identical to the Sun,
we could simply say that there is one solar mass of stars for each solar
luminosity of output power, or  this corresponds to
about 43 metric tons for every watt of yellow-green light. However, stars are
not uniform in their properties.

Consider, for instance, the stars that astronomers refer to as “main
sequence” stars; these are stars that are powered, like the Sun, by hydrogen
fusion in their cores. The surface temperature and luminosity of a main
sequence star are determined by its mass, with the most massive stars being
the hottest and brightest. Astronomers find it useful to encode the surface
temperature of a star as a letter, called the spectral type of the star. For
historical reasons, these spectral types are not in alphabetical order: from
hottest to coolest, they are O, B, A, F, G, K, and M. (Although the sequence
of spectral types looks like an explosion in an alphabet soup factory, it does
provide us with a useful shorthand: hot, luminous, massive main sequence
stars can be called “O stars” for short, while cool, dim, low-mass main
sequence stars are “M stars.”) An O star with mass M = 60 M⊙ has a V-band
luminosity LV ≈ 20 000 L⊙,V, and thus a mass-to-light ratio M/LV ≈ 0.003M⊙/
L⊙,V. By contrast, an M star with mass M = 0.1 M⊙ has LV ≈ 5 × 10−5 L⊙,V,
and thus a mass-to-light ratio M/LV ≈ 2000M⊙/ L⊙,V.



The mass-to-light ratio of the stars in a galaxy will therefore depend on
the mix of stars that it contains. The physical processes that form stars are
found empirically to favor low-mass stars over high-mass stars. In a star-
forming region, the initial mass function χ(M) is defined so that χ(M)dM is
the number of stars created with masses in the range M → M+dM. At masses
M > 1 M⊙, the initial mass function is well fitted by a power law,

(7.2)

The power-law index β varies from location to location, but a value β = 2.3 is
typical. At lower masses, the shape of the initial mass function is less well
determined, but a log-normal distribution is found to give a reasonable fit:

(7.3)

The characteristic mass Mc and the width σ of the distribution vary from
location to location. However, typical values, when masses are measured in
units of the solar mass, are Mc ≈ 0.2 and σ ≈ 0.5.

The initial mass function found by combining Equations 7.2 and 7.3 is
plotted in Figure 7.1.2 Gaseous spheres less massive than M = 0.08 M⊙ are
actually brown dwarfs rather than stars. The difference between a brown
dwarf and a star is that a brown dwarf is too low in mass for hydrogen fusion
to be ignited at its center. Since brown dwarfs are not powered by nuclear
fusion, they tend to be even cooler and dimmer than M stars. The initial mass
function for stars and brown dwarfs is highest in the mass range 0.02 M⊙ →
0.2 M⊙; O stars, with M > 18 M⊙, are far out on the power-law tail of the
initial mass function. At the time of formation, there will be about 250 low-
mass M stars for every O star. Although the total mass of 250 M stars is
comparable to that of a single O star, their total V-band luminosity is
negligible compared to the O star’s luminosity. In galaxies actively forming
stars today, the mass-to-light ratio of the stellar population is found to be as
small as M/LV ≈ 0.3 M⊙/ L⊙,V.



Figure 7.1 An initial mass function for stars and brown dwarfs. Mass ranges corresponding
to the standard stellar spectral types O through M are indicated, as well as the low-mass
realm of brown dwarfs. The values β = 2.3, Mc = 0.2M⊙ and σ = 0.5 are assumed in the
Chabrier mass function of Equations 7.2 and 7.3.

Although O stars are extremely luminous, they are also short-lived. An O
star with a mass M = 60 M⊙ will run out of fuel for fusion in a time t ≈ 3Myr;
it will then explode as a type II supernova. Thus, a galaxy that is quiescent
(that is, one that has long since stopped forming new stars) will lack O stars.
The mass-to-light ratio of quiescent galaxies can rise to as large as M/LV ≈ 8
M⊙/ L⊙,V. In the local universe, there is a mix of star-forming and quiescent
galaxies, so we can’t go too badly wrong if we take an averaged mass-to-light
ratio of 〈M/LV 〉 ≈ 4 M⊙/ L⊙,V. With this value, we find that the mass density
of stars in the universe today is

(7.4)

Since the current critical density of the universe, expressed as a mass density,
is ρc,0 = 1.28 × 1011 M⊙ Mpc−3, the current density parameter of stars is



(7.5)

By this accounting, stars make up just 0.3% of the density needed to flatten
the universe. The density parameter in stars is boosted slightly if you broaden
the category of stars to include stellar remnants such as white dwarfs, neutron
stars, and black holes, as well as substellar objects such as brown dwarfs.
However, even when you add ex-stars and not-quite-stars to the total, you
still find a density parameter Ω⋆,0 < 0.005.

Galaxies also contain baryonic matter that is not in the form of stars,
stellar remnants, or brown dwarfs. In our galaxy and in M31, for instance, the
mass of interstellar gas is about 20 percent of the mass in stars. In irregular
galaxies such as the Magellanic Clouds, the ratio of gas to stars is even
higher. In addition, there is a significant amount of gas between galaxies.
Consider a rich cluster of galaxies such as the Coma cluster, located about
100 Mpc from our galaxy, in the direction of the constellation Coma
Berenices. At visible wavelengths, as shown in Figure 7.2, most of the light
comes from the stars within the cluster’s galaxies. The two brightest galaxies
in the Coma cluster, NGC 4889 (on the left in Figure 7.2) and NGC 4874 (on
the right), each have a luminosity LV ≈ 2.5 × 1011L⊙,V.3 The Coma cluster
contains thousands of galaxies, most of them far less luminous than NGC
4889 and NGC 4874; their summed luminosity in the V band comes to
LComa,V ≈ 5 × 1012 L⊙,V. If the mass-to-light ratio of the stars in the Coma
cluster is 〈M/LV 〉 ≈ 4 M⊙/ L⊙,V, then the total mass of stars in the Coma
cluster is MComa,⋆ ≈ 2 × 1013 M⊙. Although 20 trillion solar masses represents
a lot of stars, the stellar mass in the Coma cluster is small compared to the
mass of the hot, intracluster gas between the galaxies in the cluster. X-ray
images, such as the one shown in Figure 7.3, reveal that hot, low-density gas,
with a typical temperature of T ≈ 108 K, fills the space between clusters,
emitting X-rays with a typical energy of E ∼ kTgas ∼ 9 keV. The total amount
of X-ray emitting gas in the Coma cluster is estimated to be MComa,gas ≈ 2 ×
1014 M⊙, roughly ten times the mass in stars.



Figure 7.2 The Coma cluster as seen in visible light. The region shown is 36 arcminutes by
24 arcminutes, equivalent to 1.1Mpc by 0.7Mpc at the distance of the Coma cluster. [Sloan
Digital Sky Survey]

Figure 7.3 The Coma cluster as seen in X-ray light. The location, orientation, and scale are
the same as in the visible light image of Figure 7.2. [NASA SkyView: data from ROSAT
orbiting X-ray observatory]

Not all the baryonic matter in the universe is easy to detect. About 85% of
the baryons in the universe are in the extremely tenuous gas of intergalactic



space, outside galaxies and clusters of galaxies. Much of this intergalactic gas
is too low in density to be readily detected with current technology. The best
limits on the baryon density of the universe actually come from observations
of the cosmic microwave background and from the predictions of primordial
nucleosynthesis in the early universe. The cosmic microwave background has
temperature fluctuations whose properties depend on the baryon-to-photon
ratio when the universe was a quarter of a million years old. In addition, the
efficiency with which nucleosynthesis takes place in the early universe,
converting hydrogen into deuterium, helium, lithium, and other elements,
depends on the baryon-to-photon ratio when the universe was a few minutes
old. Both these sources of information about the early universe indicate that
the density parameter of baryonic matter today must be

(7.6)

ten to twenty times the density parameter for stars. When you stare up at the
night sky and marvel at the glory of the stars, you are actually marveling at a
minority of the baryonic matter in the universe.

7.2 Dark Matter in Galaxies
The situation, in fact, is even more extreme than stated in the previous
section. Not only is most of the baryonic matter undetectable by our eyes, but
most of the matter is not even baryonic. The majority of the matter in the
universe is nonbaryonic dark matter, which doesn’t absorb, emit, or scatter
light of any wavelength. One way of detecting dark matter is to look for its
gravitational influence on visible matter. A classic method of detecting dark
matter involves looking at the orbital speeds of stars in spiral galaxies such as
our own galaxy and M31. Spiral galaxies contain flattened disks of stars;
within the disk, stars are on nearly circular orbits around the center of the
galaxy. The Sun, for instance, is on such an orbit – it is R = 8.2 kpc from the
galactic center, and has an orbital speed of v = 235 km s−1.

Suppose that a star is on a circular orbit around the center of its galaxy. If
the radius of the orbit is R and the orbital speed is v, then the star experiences
an acceleration



(7.7)

directed toward the center of the galaxy. If the acceleration is provided by the
gravitational attraction of the galaxy, then

(7.8)

where M(R) is the mass contained within a sphere of radius R centered on the
galactic center.4 The relation between v and M is found by setting Equation
7.7 equal to Equation 7.8:

(7.9)

or

(7.10)

The surface brightness I of the disk of a spiral galaxy typically falls off
exponentially with distance from the center:

(7.11)

with the scale length Rs typically being a few kiloparsecs. For our galaxy, the
scale length measured in the V band is Rs ≈ 4 kpc; for M31, a somewhat
larger disk galaxy, Rs ≈ 6 kpc. Once you are a few scale lengths from the
center of the spiral galaxy, the mass of stars inside R becomes essentially
constant. Thus, if stars contributed all, or most, of the mass in a galaxy, the



velocity would fall as  at large radii. This relation between orbital
speed and orbital radius,  is referred to as “Keplerian rotation,”
since it’s what Kepler found for orbits in the solar system, where 99.8 percent
of the mass is contained within the Sun.

The first astronomer to detect the rotation of M31 was Vesto Slipher, in
1914, two years after he measured the blueshift resulting from its motion
toward our own galaxy. However, given the difficulty of measuring the
spectra at low surface brightness, the orbital speed v at R > 3Rs = 18 kpc was
not accurately measured until more than half a century later. In 1970, Vera
Rubin and Kent Ford looked at emission lines from regions of hot ionized gas
in M31, and were able to find the orbital speed v(R) out to a radius R = 24
kpc = 4Rs. Their results gave no sign of a Keplerian decrease in the orbital
speed. At R > 4Rs, a small amount of atomic hydrogen is still in the disk of
M31, which can be detected by means of its emission line at λ = 21 cm. From
observations of the Doppler shift of this emission line, the orbital speed is
found to be nearly constant at v(R) ≈ 230 km s−1 out to R = 35 kpc ≈ 6Rs.
Since the orbital speed of the stars and gas at large radii (R > 3Rs) is greater
than it would be if stars and gas were the only matter present, we deduce the
presence of a dark halo within which the visible stellar disk is embedded.
The mass of the dark halo provides the necessary gravitational “anchor” to
keep the high-speed stars and gas from being flung out into intergalactic
space.

M31 is not a freak; most, if not all, spiral galaxies have comparable dark
halos. For instance, our own galaxy has an orbital speed that actually seems
to be roughly constant at R > 15 kpc, instead of decreasing in a Keplerian
fashion. If we approximate the orbital speed v as being constant with radius,
the mass of a spiral galaxy, including both the luminous disk and the dark
halo, can be found from Equation 7.10:

(7.12)

The values of v and R in the above equation are scaled to the Sun’s location
in our galaxy. Since our galaxy’s luminosity in the V band is estimated to be
Lgal,V = 2.0 × 1010 L⊙,V, this means that the mass-to-light ratio of our galaxy,



taken as a whole, is

(7.13)

using v = 235 km s−1 in Equation 7.12. The quantity Rhalo is the radius of the
dark halo surrounding the luminous disk of our galaxy. The exact value of
Rhalo is poorly known. A rough estimate of the halo size can be made by
looking at the velocities of the globular clusters and satellite galaxies (such as
the Magellanic Clouds) that orbit our galaxy. For these hangers-on to remain
gravitationally bound to our galaxy, the halo must extend as far as Rhalo ≈ 75
kpc, implying a total mass for our galaxy of Mgal ≈ 9.6 × 1011 M⊙, and a total
mass-to-light ratio 〈M/LV 〉gal ≈ 48M⊙/ L⊙,V. This mass-to-light ratio is an
order of magnitude greater than that of the stars in our galaxy, implying a
dark halo much more massive than the stellar disk. Some astronomers have
speculated that the dark halo is actually four times larger in radius, with Rhalo
≈ 300 kpc; this would mean that our halo stretches nearly halfway to M31.
With Rhalo ≈ 300 kpc, the mass of our galaxy would be Mgal ≈ 3.8 × 1012 M⊙,
and the total mass-to-light ratio would be 〈M/LV 〉gal ≈ 190 M⊙/ L⊙,V.

7.3 Dark Matter in Clusters
The first astronomer to make a compelling case for the existence of large
quantities of dark matter was Fritz Zwicky, in the 1930s. In studying the
Coma cluster of galaxies (shown in Figure 7.2), he noted that the dispersion
in the radial velocity of the cluster’s galaxies was very large – around 1000
km s−1. The stars and gas visible within the galaxies simply did not provide
enough gravitational attraction to hold the cluster together. In order to keep
the galaxies in the Coma cluster from flying off into the surrounding voids,
Zwicky concluded, the cluster must contain a large amount of “dunkle
Materie,” or (translated into English) “dark matter.”5

To follow Zwicky’s reasoning at a more mathematical level, let us
suppose that a cluster of galaxies consists of N galaxies, each of which can be



approximated as a point mass, with a mass mi (i = 1, 2, ..., N), a position 
and a velocity  Clusters of galaxies are gravitationally bound objects, not
expanding with the Hubble flow. The motion of individual galaxies within
the cluster is well described by Newtonian physics; the acceleration of the ith
galaxy is thus given by the formula

(7.14)

Note that Equation 7.14 assumes that the cluster is an isolated system, with
the gravitational acceleration due to matter outside the cluster being
negligibly small.

The gravitational potential energy of the system of N galaxies is

(7.15)

This is the energy that would be required to pull the N galaxies away from
each other so that they would all be at infinite distance from each other. (The
factor of 1/2 in front of the double summation ensures that each pair of
galaxies is only counted once in computing the potential energy.) The
potential energy of the cluster can also be written in the form

(7.16)

where  is the total mass of all the galaxies in the cluster, α is a
numerical factor of order unity that depends on the density profile of the
cluster, and rh is the half-mass radius of the cluster – that is, the radius of a
sphere centered on the cluster’s center of mass and containing a mass M/2.
For observed clusters of galaxies, it is found that α ≈ 0.45 gives a good fit to
the potential energy.

The kinetic energy associated with the relative motion of the galaxies in



the cluster is

(7.17)

The kinetic energy K can also be written in the form

(7.18)

where

(7.19)

is the mean square velocity (weighted by galaxy mass) of all the galaxies in
the cluster.

It is also useful to define the moment of inertia of the cluster as

(7.20)

The moment of inertia I can be linked to the kinetic energy and the potential
energy if we start by taking the second time derivative of I:

(7.21)

Using Equation 7.17, we can rewrite this as

(7.22)



To introduce the potential energy W into the above relation, we can use
Equation 7.14 to write

(7.23)

However, we could equally well switch around the i and j subscripts to find
the equally valid equation

(7.24)

Since

(7.25)

(it doesn’t matter whether we call the variable over which we’re summing i
or j or k or “Fred”), we can combine Equations 7.23 and 7.24 to find

(7.26)

Thus, the first term on the right-hand side of Equation 7.22 is simply 2W, and
we may now write down the simple relation

(7.27)



This relation is known as the virial theorem. It was first derived in the
nineteenth century in the context of the kinetic theory of gases, but as we
have seen, it applies perfectly well to a self-gravitating system of point
masses.

The virial theorem is particularly useful when it is applied to a system in
steady state, with a constant moment of inertia. (This implies, among other
things, that the system is neither expanding nor contracting, and that we are
using a coordinate system in which the center of mass of the cluster is at
rest.) If I = constant, then the steady-state virial theorem is

(7.28)

or

(7.29)

Using Equations 7.16 and 7.18 in Equation 7.29, we find

(7.30)

This means we can use the virial theorem to estimate the mass of a cluster of
galaxies, or any other self-gravitating steady-state system:

(7.31)

Note the similarity between Equation 7.12, used to estimate the mass of a
rotating spiral galaxy, and Equation 7.31, used to estimate the mass of a
cluster of galaxies. In either case, we estimate the mass of a self-gravitating
system by multiplying the square of a characteristic velocity by a
characteristic radius, then dividing by the gravitational constant G.

Applying the virial theorem to a real cluster of galaxies, such as the Coma



cluster, is complicated by the fact that we have only partial information about
the cluster, and thus do not know 〈v2〉 and rh exactly. For instance, we can
find the line-of-sight velocity of each galaxy from its redshift, but the
velocity perpendicular to the line of sight is unknown. From measurements of
the redshifts of hundreds of galaxies in the Coma cluster, the mean redshift of
the cluster is found to be

(7.32)

which can be translated into a distance

(7.33)

The velocity dispersion of the cluster along the line of sight is found to be

(7.34)

If we assume that the velocity dispersion is isotropic, then the three-
dimensional mean square velocity 〈v2〉 will be equal to three times the one-
dimensional mean square velocity  yielding

(7.35)

Estimating the half-mass radius rh of the Coma cluster is even more peril-
ridden than estimating the mean square velocity 〈v2〉. After all, we don’t
know the distribution of dark matter in the cluster beforehand; in fact, the
total amount of dark matter is what we’re trying to find out. However, if we
assume that the mass-to-light ratio is constant with radius, then the sphere
containing half the mass of the cluster will be the same as the sphere
containing half the luminosity of the cluster. If we further assume that the
cluster is intrinsically spherical, then the observed distribution of galaxies
within the Coma cluster indicates a half-mass radius



(7.36)

After all these assumptions and approximations, we may estimate the
mass of the Coma cluster to be

(7.37)

Thus, about one percent of the mass of the Coma cluster consists of stars
(MComa,⋆ ≈ 2 × 1013 M⊙), and about ten percent consists of hot intracluster gas
(MComa,gas ≈ 2 × 1014 M⊙). Combined with the luminosity of the Coma
cluster, LComa,V ≈ 5 × 1012 L⊙,V, the total mass of the Coma cluster implies a
mass-to-light ratio

(7.38)

greater than the mass-to-light ratio of our galaxy.
The presence of a vast reservoir of dark matter in the Coma cluster is

confirmed by the fact that the hot, X-ray emitting intracluster gas, shown in
Figure 7.3, is still in place; if there were no dark matter to anchor the gas
gravitationally, the hot gas would have expanded beyond the cluster on time
scales much shorter than the Hubble time. The temperature and density of the
hot gas in the Coma cluster can be used to make yet another estimate of the
cluster’s mass. If the hot intracluster gas is supported by its own pressure
against gravitational infall, it must obey the equation of hydrostatic
equilibrium:

(7.39)

where Pgas is the pressure of the gas, ρgas is the density of the gas, and M is
the total mass inside a sphere of radius r, including gas, stars, dark matter,



lost socks, and anything else.
The pressure of the gas is given by the perfect gas law,

(7.40)

where Tgas is the temperature of the gas, and μ is the mean mass per gas
particle. The mass of the cluster, as a function of radius, is found by
combining Equations 7.39 and 7.40:

(7.41)

The above equation assumes that μ is constant with radius, as we’d expect if
the chemical composition and ionization state of the gas are uniform
throughout the cluster.

The X-rays emitted from the hot intracluster gas are a combination of
bremsstrahlung emission (caused by the acceleration of free electrons by
protons and helium nuclei) and line emission from highly ionized iron and
other heavy elements. Starting from an X-ray spectrum, it is possible to fit
models to the emission and thus compute the temperature Tgas(r), density
ρgas(r), and chemical composition of the gas. Using this technique, the mass
of the Coma cluster is estimated to be M ≈ 1.3×1015 M⊙ within r ≈ 4 Mpc of
the cluster center. Given the uncertainties, this is consistent with the mass
estimate of the virial theorem.

Other clusters of galaxies besides the Coma cluster have had their masses
estimated, using the virial theorem applied to their galaxies or the equation of
hydrostatic equilibrium applied to their gas. Typical mass-to-light ratios for
rich clusters are similar to those of the Coma cluster. If the masses of all the
clusters of galaxies are added together, it is found that their density parameter
is

(7.42)



This provides a lower limit to the matter density of the universe, since any
smoothly distributed matter in the intercluster voids will not be included in
this number.

7.4 Gravitational Lensing
So far, I have outlined the classical methods for detecting dark matter via its
gravitational effects on luminous matter.6 We can detect dark matter around
spiral galaxies because it affects the motions of stars and interstellar gas. We
can detect dark matter in clusters of galaxies because it affects the motions of
galaxies and intracluster gas. However, as Einstein realized, dark matter will
affect not only the trajectory of matter, but also the trajectory of photons.
Thus, dark matter can bend and focus light, acting as a gravitational lens.
The effects of dark matter on photons have been used to search for dark
matter within the halo of our own galaxy, as well as in distant clusters of
galaxies.

To see how gravitational lensing can be used to detect dark matter, start by
considering the dark halo surrounding our galaxy. If there were a population
of cold white dwarfs, black holes, brown dwarfs, or similar dim compact
objects in the halo, they would be very difficult to detect from the light that
they emit. Thus, it was suggested that part of the dark matter in the halo could
consist of MACHOs, a slightly strained acronym for MAssive Compact Halo
Objects. If a photon passes such a compact massive object at an impact
parameter b, as shown in Figure 7.4, the local curvature of spacetime will
cause the photon to be deflected by an angle

(7.43)

where M is the mass of the compact object. For instance, light from a distant
star that just grazes the Sun’s surface should be deflected through an angle

(7.44)



Figure 7.4 Deflection of light by a massive compact object.

In 1919, after Einstein predicted a deflection of this magnitude, an eclipse
expedition photographed stars in the vicinity of the Sun. Comparison of the
eclipse photographs with photographs of the same star field taken six months
earlier revealed that the apparent positions of the stars were deflected by the
amount that Einstein had predicted. This result brought fame to Einstein and
experimental support to the theory of general relativity.

Since a massive object can deflect light, it can act as a lens. Suppose a
MACHO in the halo of our galaxy passes directly between an observer in our
galaxy and a star in the Large Magellanic Cloud. Figure 7.5 shows such a
situation, with a MACHO halfway between the observer and the star. As the
MACHO deflects the light from the distant star, it produces an image of the
star that is both distorted and amplified. If the MACHO is exactly along the
line of sight between the observer and the lensed star, the image produced is a
perfect ring, with angular radius

(7.45)

where M is the mass of the lensing MACHO, d is the distance from the
observer to the lensed star, and xd (where 0 < x < 1) is the distance from the
observer to the lensing MACHO. The angle θE is known as the Einstein
radius. If x ≈ 0.5 (that is, if the MACHO is roughly halfway between the
observer and the lensed star), then

(7.46)



Figure 7.5 Light from a star in the Large Magellanic Cloud is deflected by a MACHO on
its way to an observer in the disk of our galaxy (seen edge-on in this figure).

If the MACHO does not lie perfectly along the line of sight to the star, then
the image of the star will be distorted into two or more arcs instead of a
single unbroken ring. Although the Einstein radius for an LMC star being
lensed by a MACHO is too small to be resolved, it is possible, in some cases,
to detect the amplification of the flux from the star. For the amplification to
be significant, the angular distance between the MACHO and the lensed star,
as seen from Earth, must be comparable to, or smaller than, the Einstein
radius. Given the small size of the Einstein radius, the probability of any
particular star in the LMC being lensed at any moment is tiny. It has been
calculated that if the dark halo of our galaxy were entirely composed of
MACHOs, then the probability of any given star in the LMC being lensed at
any given time would still only be P ∼ 5 × 10−7.

To detect lensing by MACHOs, various research groups took up the
daunting task of monitoring millions of stars in the Large Magellanic Cloud
to watch for changes in their flux. Since the MACHOs in our dark halo and
the stars in the LMC are in constant relative motion, the typical signature of a
“lensing event” is a star that becomes brighter as the angular distance
between star and MACHO decreases, then becomes dimmer as the angular
distance increases again. The typical time scale for a lensing event is the time
it takes a MACHO to travel through an angular distance equal to θE as seen
from Earth; for a MACHO halfway between here and the LMC, this is

(7.47)



where v is the relative transverse velocity of the MACHO and the lensed star
as seen by the observer on Earth. Generally speaking, more massive
MACHOs produce larger Einstein rings and thus will amplify the lensed star
for a longer time.

The research groups that searched for MACHOs found a scarcity of short
duration lensing events, suggesting that there is no significant population of
brown dwarfs or freefloating planets (with M < 0.08 M⊙) in the dark halo of
our galaxy. The total number of lensing events they found suggests that at
most 8 percent of the halo mass could be in the form of MACHOs. The
general conclusion is that most of the matter in the dark halo of our galaxy is
due to a smooth distribution of nonbaryonic dark matter, instead of being
congealed into MACHOs of roughly stellar or planetary mass.

Gravitational lensing occurs at all mass scales. Suppose, for instance, that
a cluster of galaxies, with M ∼ 1014 M⊙, at a distance ∼ 500 Mpc from our
galaxy, lenses a background galaxy at d ∼ 1000 Mpc. The Einstein radius for
this configuration will be

(7.48)

The arc-shaped images into which the background galaxy is distorted by the
lensing cluster can thus be resolved. For instance, Figure 7.6 shows a Hubble
Space Telescope image of the cluster Abell 2218, which has a redshift z =
0.176, and hence is at a proper distance d = 740 Mpc. The elongated, slightly
curved arcs seen in Figure 7.6 are not oddly shaped galaxies within the
cluster; instead, they are background galaxies, at redshifts z > 0.176, which
are gravitationally lensed by the cluster mass. The mass of clusters can be
estimated by the degree to which they lens background galaxies. The masses
calculated in this way are in general agreement with the masses found by
applying the virial theorem to the motions of galaxies in the cluster or by
applying the equation of hydrostatic equilibrium to the hot intracluster gas.



Figure 7.6 The central regions of the rich cluster Abell 2218, displaying gravitationally
lensed arcs. The region shown is 3.2 arcminutes by 1.6 arcminutes, equivalent to 0.68Mpc
by 0.34Mpc at the distance of Abell 2218. [NASA, ESA, and Johan Richard (Caltech)]

7.5 What’s the Matter?
We described how to detect dark matter by its gravitational effects, but have
been dodging the essential question: “What is it?” As you might expect,
conjecture about the nature of the nonbaryonic dark matter has run rampant
(some might even say it has run amok). A component of the universe that is
totally invisible is an open invitation to speculation. To give a taste of the
variety of speculation, some scientists have proposed that the dark matter
might be made of axions, a type of elementary particle with a rest energy of
maxc2 ∼ 10−5 eV, equivalent to max ∼ 2 × 10−41 kg. This is a rather low mass –
it would take some 50 billion axions (if they indeed exist) to equal the mass
of one electron. On the other hand, some scientists have conjectured that the
dark matter might be made of primordial black holes, with masses up to mBH
∼ 105 M⊙, equivalent to mBH ∼ 2×1035 kg.7 This is a rather high mass – it
would take some 30 billion Earths to equal the mass of one primordial black
hole (if they indeed exist). It is a sign of the vast ignorance concerning
nonbaryonic dark matter that two candidates for the role of dark matter differ
in mass by 76 orders of magnitude.



One nonbaryonic particle that we know exists, and which has a nonzero
mass, is the neutrino. As stated in Section 5.1, there should exist today a
cosmic background of neutrinos. Just as the cosmic microwave background is
a relic of the time when the universe was opaque to photons, the cosmic
neutrino background is a relic of the time when the universe was hot and
dense enough to be opaque to neutrinos. The number density of each of the
three flavors of neutrinos (νe, νμ, and ντ) has been calculated to be 3/11 times
the number density of CMB photons, yielding a total number density of
neutrinos

(7.49)

This means that at any instant, about twenty million cosmic neutrinos are
zipping through your body, “like photons through a pane of glass.” In order
to provide all the nonbaryonic mass in the universe, the average neutrino
mass would have to be

(7.50)

Given a density parameter in nonbaryonic dark matter of Ωdm,0 ≈ 0.262, this
implies that an average neutrino mass of

(7.51)

would be necessary to provide all the nonbaryonic dark matter in the
universe. Studies of neutrino oscillations and of the large scale structure of
the universe (see Equations 2.25 and 2.26) indicate that the average neutrino
mass actually lies in the range
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This implies that the current density parameter in massive neutrinos lies in
the range

(7.53)

and that less than 3 percent of the dark matter takes the form of neutrinos.
Given the insufficient mass density of neutrinos, particle physicists have

provided several possible alternative candidates for the role of dark matter.
For instance, consider the extension of the Standard Model of particle physics
known as supersymmetry. Various supersymmetric models predict the
existence of massive nonbaryonic particles such as photinos, gravitinos,
axinos, sneutrinos, gluinos, and so forth. Like neutrinos, the hypothetical
supersymmetric particles interact with other particles only through gravity
and through the weak nuclear force, which makes them intrinsically difficult
to detect. Particles that interact via the weak nuclear force, but which are
much more massive than the upper limit on the neutrino mass, are known
generically as Weakly Interacting Massive Particles, or WIMPs.8 Since
WIMPs, like neutrinos, do interact with atomic nuclei on occasion,
experimenters have set up WIMP detectors to discover cosmic WIMPs. So
far (to repeat a statement made in the first edition of this book), no
convincing detections have been made – but the search goes on.

Exercises
7.1 Suppose it were suggested that black holes of mass 10−8 M⊙ made up all

the dark matter in the halo of our galaxy. How far away would you
expect the nearest such black hole to be? How frequently would you
expect such a black hole to pass within 1 AU of the Sun? (An order-of-
magnitude estimate is sufficient.)

Suppose it were suggested that MACHOs of mass 10−3 M⊙ (about the
mass of Jupiter) made up all the dark matter in the halo of our galaxy.
How far away would you expect the nearest MACHO to be? How
frequently would such a MACHO pass within 1 AU of the Sun? (Again,
an order-of-magnitude estimate will suffice.)



7.2 The Draco galaxy is a dwarf galaxy within the Local Group. Its
luminosity is L = (1.8 ± 0.8)×105 L⊙ and half its total luminosity is
contained within a sphere of radius rh = 120 ± 12 pc. The red giant stars
in the Draco galaxy are bright enough to have their line-of-sight
velocities measured. The measured velocity dispersion of the red giant
stars in the Draco galaxy is σr = 10.5 ± 2.2 kms−1. What is the mass of
the Draco galaxy? What is its mass-to-light ratio? Describe the possible
sources of error in your mass estimate of this galaxy.

7.3 A light ray just grazes the surface of the Earth (M = 6.0 × 1024 kg, R =
6.4×106 m). Through what angle α is the light ray bent by gravitational
lensing? (Ignore the refractive effects of the Earth’s atmosphere.) Repeat
your calculation for a white dwarf (M = 2.0 × 1030 kg, R = 1.5 × 107 m)
and for a neutron star (M = 3.0 × 1030 kg, R = 1.2 × 104 m).

7.4 If the halo of our galaxy is spherically symmetric, what is the mass
density ρ(r) within the halo? If the universe contains a cosmological
constant with density parameter ΩΛ,0 = 0.7, would you expect it to
significantly affect the dynamics of our galaxy’s halo? Explain why or
why not.

7.5 In the previous chapter, we noted that galaxies in rich clusters are poor
standard candles because they tend to grow brighter as they merge with
other galaxies. Let’s estimate the galaxy merger rate in the Coma cluster
to see whether it’s truly significant. The Coma cluster contains N ≈ 1000
galaxies within its half-mass radius of rh ≈ 1.5 Mpc. What is the mean
number density of galaxies within the half-mass radius? Suppose that
the typical cross-sectional area of a galaxy is ∑ ≈ 10−3 Mpc2. How far
will a galaxy in the Coma cluster travel, on average, before it collides
with another galaxy? The velocity dispersion of the Coma cluster is σ ≈
880 km s−1. What is the average time between collisions for a galaxy in
the Coma cluster? Is this time greater than or less than the Hubble time?

7.6 Fusion reactions in the Sun’s core produce 2 × 1038 neutrinos per
second. If these solar neutrinos radiate isotropically away from the Sun,
about how many solar neutrinos are inside your body at any given time?
Is this larger or smaller than the number of neutrinos from the cosmic
neutrino background that are inside your body at the same moment?



1 Although old-fashioned incandescent light bulbs are castigated for their inefficiency at
producing visible light, the Sun isn’t hyper-efficient at producing visible light either. (Or
rather, to get the causality right, our eyes haven’t evolved to be hyper-efficient at
detecting sunlight.) About 10% of the Sun’s luminosity is in the ultraviolet range and
50% is in the infrared, leaving only 40% in the wavelength range λ = 400 → 700 nm.

2 An initial mass function that takes the form of a log-normal distribution with a power-
law tail to high masses is called a Chabrier function, after the astronomer Gilles
Chabrier.

3 The bright star (with diffraction spikes) just above NGC 4874 in Figure 7.2 is HD
112887, a main sequence F star at a distance d ≈ 77 pc, less than a millionth the distance
to the Coma cluster. Almost every other light source in Figure 7.2 is a galaxy within the
Coma cluster.

4 Equation 7.8 assumes that the mass distribution of the galaxy is spherically symmetric.
This is not, strictly speaking, true (the stars in the disk obviously have a flattened
distribution), but the flattening of the galaxy provides only a small correction to the
equation for the gravitational acceleration.

5 Although Zwicky’s work popularized the phrase “dark matter,” he was not the first to
use it in an astronomical context. For instance, in 1908, Henri Poincaré discussed the
possible existence within our galaxy of “matière obscure” (rendered as “dark matter” in
the standard English translation of Poincaré’s works).

6 The roots of these methods can be traced back as far as the year 1846, when Leverrier
and Adams deduced the existence of the dim planet Neptune by its effect on the orbit of
Uranus.

7 A primordial black hole is one that formed very early in the history of the universe,
rather than by the collapse of a massive star later on.

8 The acronym “MACHO,” encountered in the previous section, was first coined as a
humorous riposte to the acronym “WIMP.”



8

The Cosmic Microwave Background

If Heinrich Olbers had lived in intergalactic space and had eyes that operated
at millimeter wavelengths (admittedly a very large “if”), he would not have
formulated Olbers’ paradox. At wavelengths of a few millimeters, thousands
of times longer than human eyes can detect, most of the light in the universe
comes not from the hot balls of gas we call stars, but from the cosmic
microwave background (CMB). Unknown to Olbers, the night sky actually is
uniformly bright – it’s just uniformly bright at a temperature T0 = 2.7255 K
rather than at a temperature T ∼ T⊙ ∼ 6000 K. The current energy density of
the cosmic microwave background,

(8.1)

is only one part in 19 000 of the current critical density. However, since the
energy per CMB photon is small (hfmean = 6.34 × 10−4 eV), the number
density of CMB photons in the universe is large:

(8.2)

It is particularly enlightening to compare the energy density and number
density of photons to those of baryons (that is, protons and neutrons). In the
Benchmark Model, the current energy density of baryons is

(8.3)

The energy density in baryons today is thus 900 times the energy density in
CMB photons. Note, though, that the rest energy of a proton or neutron, Ebary



≈ 939 MeV, is more than a trillion times the mean energy of a CMB photon.
The number density of baryons, therefore, is much lower than the number
density of photons:

(8.4)

The ratio of baryons to photons in the universe (a number usually designated
by the Greek letter η) is, from Equations 8.2 and 8.4,

(8.5)

Baryons are badly outnumbered by photons in the universe as a whole, by a
ratio of 1.6 billion to one.

8.1 Observing the CMB
Although CMB photons are as common as dirt,1 Arno Penzias and Robert
Wilson were surprised when they serendipitously discovered the cosmic
microwave background. At the time of their discovery, Penzias and Wilson
were radio astronomers working at Bell Laboratories. The horn-reflector
radio antenna they used had previously been utilized to receive microwave
signals, of wavelength λ = 7.35 cm, reflected from an orbiting
communications satellite. Turning from telecommunications to astronomy,
Penzias and Wilson found a slightly stronger signal than they expected when
they turned the antenna toward the sky. They did everything they could think
of to reduce “noise” in their system. They even shooed away a pair of
pigeons that had roosted in the antenna and cleaned up what they later called
“the usual white dielectric” generated by pigeons.

The excess signal remained. It was isotropic and constant with time, so it
couldn’t be associated with an isolated celestial source. Wilson and Penzias
were puzzled until they were put in touch with Robert Dicke and his research
group at Princeton University. Dicke had deduced that the universe, if it



started in a hot dense state, should now be filled with microwave radiation.2
In fact, Dicke and his group were in the process of building a microwave
antenna when Penzias and Wilson told them that they had already detected
the predicted microwave radiation. Penzias and Wilson wrote a paper for The
Astrophysical Journal in which they wrote, “Measurements of the effective
zenith noise temperature of the 20-foot horn-reflector antenna ... at 4080
Mc/s have yielded a value about 3.5 K higher than expected. This excess
temperature is, within the limits of our observations, isotropic, unpolarized,
and free from seasonal variations (July, 1964–April, 1965). A possible
explanation for the observed excess noise temperature is the one given by
Dicke, Peebles, Roll, and Wilkinson in a companion letter in this issue.” The
companion paper by Dicke and his collaborators points out that the radiation
could be a relic of an early, hot, dense, and opaque state of the universe.

Measuring the spectrum of the CMB, and confirming that it is indeed a
blackbody, is not a simple task, even with modern technology. The mean
energy per CMB photon (6.34 × 10−4 eV) is tiny compared to the energy
required to break up an atomic nucleus (∼ 2 MeV) or even the energy
required to ionize an atom (∼ 10 eV). However, the mean photon energy is
comparable to the rotational energy of a small molecule such as H2O. Thus,
CMB photons can zip along for more than 13 billion years through tenuous
intergalactic gas, then be absorbed a microsecond away from the Earth’s
surface by a water molecule in the atmosphere. Microwaves with
wavelengths shorter than λ ∼ 3 cm are strongly absorbed by water molecules.
Penzias and Wilson observed the CMB at a wavelength λ = 7.35 cm,
corresponding to a photon energy E = 1.7×10−5 eV, because that was the
wavelength of the signals that Bell Labs had been bouncing off orbiting
satellites. Thus, Penzias and Wilson were detecting CMB photons far on the
low-energy tail of the blackbody spectrum (Figure 2.7), with an energy just
0.027 times the mean photon energy.

The CMB can be measured at wavelengths shorter than 3 cm by observing
from high-altitude balloons or from the South Pole, where the combination of
cold temperatures and high altitude3 keeps the atmospheric humidity low.
The best way to measure the spectrum of the CMB, however, is to go
completely above the damp atmosphere of the Earth. The CMB spectrum was
measured accurately over a wide range of wavelengths by the Cosmic
Background Explorer (COBE) satellite, launched in 1989, into an orbit 900
km above the Earth’s surface. The CMB was then mapped at greater angular



resolution by the Wilkinson Microwave Anisotropy Probe (WMAP), launched
in 2001, and by the Planck satellite, launched in 2009. Both WMAP and
Planck were in orbits librating about the L2 point of the Sun–Earth system,
1.5 million km from the Earth. Multiple results have come from observations
of the cosmic microwave background.

Result number one: At any angular position (θ, ϕ) on the sky, the spectrum
of the cosmic microwave background is very close to that of an ideal
blackbody, as illustrated in Figure 8.1. How close is very close? COBE could
have detected fluctuations in the spectrum as small as one part in 104. No
deviations were found at this level within the wavelength range investigated
by COBE.

Figure 8.1 The spectrum of the cosmic microwave background, as measured by COBE.
The uncertainties in the measurement are smaller than the thickness of the line. [Fixsen et
al. 1996 ApJ, 473, 576]

Result number two: The CMB has the dipole distortion in temperature
shown in Figure 8.2. That is, although each point on the sky has a blackbody
spectrum, in one half of the sky the spectrum is slightly blueshifted to higher
temperatures, and in the other half the spectrum is slightly redshifted to lower
temperatures. 4 This dipole distortion is a simple Doppler shift, caused by the
net motion of WMAP relative to a frame of reference in which the CMB is



isotropic. After correcting for the orbital motion of WMAP around the Sun (v
∼ 30 km s−1), for the orbital motion of the Sun around the galactic center (v ∼
235 km s−1), and for the orbital motion of our galaxy relative to the center of
mass of the Local Group (v ∼ 80 km s−1), it is found that the Local Group is
moving in the general direction of the constellation Hydra, with a speed vLG
= 630 ± 20 km s−1 = 0.0021c. This peculiar velocity for the Local Group is
what you’d expect as the result of gravitational acceleration by the largest
lumps of matter in the vicinity of the Local Group. The Local Group is being
accelerated toward the Virgo cluster, the nearest big cluster to us. In addition,
the Virgo cluster is being accelerated toward the Hydra-Centaurus
supercluster, the nearest supercluster to us. The combination of these two
accelerations, working over the age of the universe, has launched the Local
Group in the direction of Hydra, at 0.2% the speed of light.

Figure 8.2 The dipole fluctuation in the temperature of the CMB, as measured by WMAP.
The horizontal band across the middle is non-thermal emission from gas in our own galaxy.
[NASA/WMAP Science Team]

Result number three: After the dipole distortion of the CMB is subtracted
away, the remaining temperature fluctuations, shown in Figure 8.3, are small
in amplitude. Let the temperature of the CMB, at a given point on the sky, be
T(θ, ϕ). The mean temperature, averaging over all locations, is



(8.6)

Figure 8.3 The fluctuations in temperature remaining in the CMB once the dipole
fluctuation and the non-thermal foreground emission from our own galaxy are subtracted.
[Planck/ESA]

The dimensionless temperature fluctuation at a given point (θ, ϕ) on the sky
is

(8.7)

After subtraction of the Doppler dipole, the root mean square temperature
fluctuation found by COBE was

(8.8)

(Given the limited angular resolution of the COBE satellite, this excludes the



temperature fluctuations on an angular scale < 10◦.) Even taking into account
the blurring from COBE’s low resolution, the fact that the CMB temperature
varies by only 30 microKelvin across the sky represents a remarkably close
approach to isotropy.

The observations that the CMB has a nearly perfect blackbody spectrum
and that it is nearly isotropic (once the Doppler dipole is removed) provide
strong support for the Hot Big Bang model of the universe. A background of
nearly isotropic blackbody radiation is natural if the universe was once hot,
dense, opaque, and nearly homogeneous, as it was in the Hot Big Bang
scenario. If the universe did not go through such a phase, then any
explanation of the cosmic microwave background will have to be much more
contrived.

8.2 Recombination and Decoupling
To understand in more detail the origin of the cosmic microwave
background, we’ll have to examine carefully the process by which the
baryonic matter goes from being an ionized plasma to a gas of neutral atoms,
and the closely related process by which the universe goes from being opaque
to being transparent. To avoid muddle, we will distinguish between three
closely related (but not identical) moments in the history of the universe.
First, the epoch of recombination is the time at which the baryonic
component of the universe goes from being ionized to being neutral.
Numerically, we define it as the instant in time when the number density of
ions is equal to the number density of neutral atoms.5 Second, the epoch of
photon decoupling is the time when the rate at which photons scatter from
electrons becomes smaller than the Hubble parameter (which tells us the rate
at which the universe expands). When photons decouple, they cease to
interact with the electrons, and the universe becomes transparent. Third, the
epoch of last scattering is the time at which a typical CMB photon underwent
its last scattering from an electron. Surrounding every observer in the
universe is a last scattering surface, illustrated in Figure 8.4, from which the
CMB photons have been streaming freely, with no further scattering by
electrons. The probability that a photon will scatter from an electron is small
once the expansion rate of the universe is faster than the scattering rate; thus,
the epoch of last scattering is very close to the epoch of photon decoupling.



Figure 8.4 An observer is surrounded by a spherical last scattering surface. The photons of
the CMB travel straight to us from the last scattering surface, being continuously
redshifted.

To keep things from getting too complicated, we will assume that the
baryonic component of the universe consisted entirely of hydrogen at the
epoch of recombination. This is not, however, a strictly accurate assumption.
Even at the time of recombination, before stars had a chance to pollute the
universe with heavy elements, there was a significant amount of helium
present. (In the next chapter, we will examine how this helium was formed in
the early universe.) However, the presence of helium is merely a
complicating factor. All the significant physics of recombination can be
studied in a simplified universe containing no elements other than hydrogen.
The hydrogen can take the form of a neutral atom (designated by the letter
H), or of a naked hydrogen nucleus, otherwise known as a proton (designated
by the letter p). To maintain charge neutrality in this hydrogen-only universe,
the number density of free electrons must be equal to that of free protons: ne
= np. The degree to which the baryonic content of the universe is ionized can
be expressed as the fractional ionization X, defined as

(8.9)

The value of X ranges from X = 1, when the baryonic content is fully ionized,



to X = 0, when it consists entirely of neutral atoms.
One useful consequence of assuming that hydrogen is the only element is

that there is now a single relevant energy scale in the problem: the ionization
energy of hydrogen, Q = 13.6 eV. A photon with an energy hf > Q is capable
of photoionizing a hydrogen atom:

(8.10)

This reaction can run in the opposite direction, as well; a proton and an
electron can undergo radiative recombination, forming a bound hydrogen
atom while a photon carries away the excess energy:

(8.11)

In a universe containing protons, electrons, and photons, the fractional
ionization X will depend on the balance between photoionization and
radiative recombination.

Let’s travel back in time to a period before the epoch of recombination.
For concreteness, let’s choose the moment when a = 10−5, corresponding to a
redshift z = 105. (In the Benchmark Model, this scale factor was reached
when the universe was seventy years old.) The temperature of the
background radiation at this time was T ≈ 3 × 105 K, and the average photon
energy was hfmean ≈ 2.7kT ≈ 60 eV, in the extreme ultraviolet. With such a
high energy per photon, and with 1.6 billion photons for every baryon, any
hydrogen atoms that happened to form by radiative recombination were very
short-lived; almost immediately, they were blasted apart into their component
electron and proton by a high-energy photon. At early times, then, the
fractional ionization of the universe was very close to X = 1.

When the universe was fully ionized, photons interacted primarily with
electrons, and the main interaction mechanism was Thomson scattering:

(8.12)

The scattering interaction is accompanied by a transfer of energy and



momentum between the photon and electron. The cross-section for Thomson
scattering is σe = 6.65×10−29 m2. The mean free path of a photon – that is, the
mean distance it travels before scattering from an electron – is

(8.13)

Since photons travel with a speed c, the rate at which a photon undergoes
scattering interactions is

(8.14)

When the baryonic component of the universe is fully ionized, ne = np = nbary.
Currently, the number density of baryons is nbary,0 = 0.25 m−3. The number
density of conserved particles, such as baryons, goes as 1/a3, so when the
early universe was fully ionized, the free electron density was

(8.15)

and the scattering rate for photons was

(8.16)

This means, for instance, that at a = 10−5, photons scattered from electrons at
a rate Γ = 5.0 × 10−6 s−1, about three times a week.

The photons remain coupled to the electrons as long as their scattering
rate, Γ, is larger than H, the rate at which the universe expands; this is
equivalent to saying that their mean free path λ is shorter than the Hubble
distance c/H. As long as photons scatter frequently from electrons, the
photons and electrons remain at the same temperature T (and thanks to the
electrons’ interactions with protons, the protons also have the same



temperature). When the photon scattering rate Γ drops below H, then the
electrons are being diluted by expansion more rapidly than the photons can
interact with them. The photons then decouple from the electrons and the
universe becomes transparent. Once the photons are decoupled from the
electrons and protons, the baryonic portion of the universe is no longer
compelled to have the same temperature as the cosmic microwave
background. During the early stages of the universe (a < arm ≈ 2.9 × 10−4) the
universe was radiation dominated, and the Friedmann equation was

(8.17)

Thus, the Hubble parameter was

(8.18)

This means, for instance, that at a = 10−5, the Hubble parameter was H = 2.1
× 10−10 s−1. Since this is much smaller than the scattering rate Γ = 5.0×10−6 s
−1 at the same scale factor, the photons were well coupled to the electrons and
protons.

If hydrogen had remained ionized (and note the qualifying if), then
photons would have remained coupled to the electrons and protons until a
relatively recent time. Taking into account the transition from a radiation-
dominated to a matter-dominated universe, and the resulting change in the
expansion rate, we can compute that if hydrogen had remained fully ionized,
then decoupling would have taken place at a scale factor a ≈ 0.0254,
corresponding to a redshift z ≈ 38 and a CMB temperature T ≈ 110 K.
However, at such a low temperature, the CMB photons are too low in energy
to keep the hydrogen ionized. Thus, the decoupling of photons is not a
gradual process, caused by the continuous lowering of free electron density
as the universe expands. Rather, it is a relatively sudden process, caused by
the plummeting of free electron density during the epoch of recombination,
as electrons combined with protons to form hydrogen atoms.



8.3 The Physics of Recombination
When does recombination, and the consequent photon decoupling, take
place? It’s easy to do a quick and dirty approximation of the recombination
temperature. Recombination, one could argue, must take place when the
mean energy per photon of the cosmic microwave background falls below the
ionization energy of hydrogen, Q = 13.6 eV. When this happens, the average
CMB photon is no longer able to photoionize hydrogen. Since the mean
CMB photon energy is ∼ 2.7kT, this line of argument would indicate a
recombination temperature of

(8.19)

Alas, this crude approximation is a little too crude to be useful. It doesn’t take
into account the fact that CMB photons are not of uniform energy – a
blackbody spectrum has an exponential tail (see Figure 2.7) trailing off to
high energies. Although the mean photon energy is 2.7kT, about one photon
in 500 will have E > 10kT, one in 3 million will have E > 20kT, and one in 30
billion will have E > 30kT. Although extremely high energy photons make up
only a tiny fraction of the CMB photons, the total number of CMB photons is
enormous, with 1.6 billion photons for every baryon. The vast swarms of
photons that surround every newly formed hydrogen atom greatly increase
the probability that the atom will collide with a photon from the high-energy
tail of the blackbody spectrum, and be photoionized.

Thus, we expect the recombination temperature to depend on the baryon-
to-photon ratio η as well as on the ionization energy Q. An exact calculation
of the fractional ionization X, as a function of η and T, requires a smattering
of statistical mechanics. Let’s start with the reaction that determines the value
of X in the early universe:

(8.20)

Our calculations will be simplified by the fact that at the time of
recombination, the photons, electrons, protons, and hydrogen atoms are in a



state of thermal equilibrium. Saying that several types of particle are in
thermal equilibrium with each other is equivalent to saying that they all have
the same temperature T. For instance, in the air around you, the N2 molecules
and O2 molecules are in thermal equilibrium with each other because of their
frequent collisions, and have the same temperature, T ≈ 300 K.6

Further simplification comes from the fact that each particle type (photon,
electron, proton, or hydrogen atom) is in a state of kinetic equilibrium. Saying
that a particular type of particle is in kinetic equilibrium is equivalent to
saying that the distribution of particle momentum p and energy E is given
either by a Fermi–Dirac distribution (if the particles are fermions, with half-
integral spin) or by a Bose–Einstein distribution (if the particles are bosons,
with integral spin). Suppose, for instance, that particles of type x have a mass
mx. Let nx(p)dp be the number density of x particles with momentum in the
range p → p + dp. If the particles are in kinetic equilibrium at temperature T,
then

(8.21)

where the + sign is chosen for a Fermi–Dirac distribution, and the − sign is
chosen for a Bose–Einstein distribution. In Equation 8.21, the factor gx is the
statistical weight of the particle; for instance, photons, electrons, protons, and
neutrons all have g = 2, corresponding to their two different spin states. The
factor μx is the chemical potential for particles of type x. As with other forms
of potential energy, such as the gravitational potential, we are particularly
interested in the difference in chemical potential between two possible states.
For instance, in the reaction given by Equation 8.20, if μH + μγ > μp + μe, then
the reaction runs preferentially from the higher energy state (H + γ) to the
lower energy state (p + e−), and photoionizations outnumber radiative
recombinations. Conversely, if μH + μγ < μp + μe, the reaction runs
preferentially in the opposite direction, and radiative recombinations
outnumber photoionizations.

For photons, the relation between energy, momentum, and frequency is
very simple: E = pc = hf. Photons are bosons with a statistical weight gγ = 2



and a chemical potential μγ = 0. This means that the number density of
photons as a function of frequency f is

(8.22)

which we have already encountered as the blackbody formula of Equation
2.30. Integrating Equation 8.22 over all photon frequencies gives the total
number density of photons:

(8.23)

At the time of recombination, electrons, protons, and hydrogen atoms all had
mc2 ≫ kT, and thus had highly nonrelativistic thermal speeds. When particles
of type x are highly nonrelativistic, we can safely use the approximation p ≈
mxv and

(8.24)

Substituting these values into Equation 8.21, we find that for particles with
mxc2 − μx ≫ kT,

(8.25)

representing a Maxwell–Boltzmann distribution of particle speeds. Integrated
over all particle momenta, the total number density of the nonrelativistic x
particles is



(8.26)

regardless of whether they are bosons or fermions.
In general, the chemical potential μx for particles other than photons will

be nonzero. However, at the time of recombination, we can make the further
simplifying assumption that the reaction

(8.27)

was in chemical equilibrium. Saying that a reaction is in chemical
equilibrium is equivalent to saying that the reaction rate going from left to
right balances the reaction rate going from right to left.7 In the case of
Equation 8.27, for instance, this means that within a given volume of
hydrogen gas there will be one radiative recombination, on average, for every
photoionization. When chemical equilibrium holds true, the sum of the
chemical potentials must be equal on both sides of the equation. For Equation
8.27, given that μγ = 0, this means that μH = μp + μe.

Using Equation 8.26 to find nH, np, and ne, and assuming that μH = μp + μe,
we find an equation that relates the number density of hydrogen atoms, free
protons, and free electrons, as long as photoionization remains in equilibrium
with radiative recombination:

(8.28)

Equation 8.28 can be simplified further. First, since the mass of an electron is
small compared to that of a proton, we can set mH/mp = 1. Second, the
binding energy Q = 13.6 eV is given by the formula (mp + me − mH)c2 = Q.
The statistical weights of the proton and electron are gp = ge = 2, while the
statistical weight of a hydrogen atom is gH = 4. Thus, the factor gH/(gpge) can
be set equal to one. The resulting equation,



(8.29)

is called the Saha equation, after the astrophysicist Meghnad Saha, who
derived it while studying ionization in stellar atmospheres.

Our next job is to convert the Saha equation into a relation between X, T,
and η. From the definition of X (Equation 8.9), we can make the substitution

(8.30)

and from the requirement of charge neutrality, we can make the substitution
ne = np. This yields

(8.31)

To eliminate np from the above equation, we recall that η ≡ nbary/nγ. In a
universe where hydrogen is the only element, and a fraction X of the
hydrogen is in the form of naked protons, we may write

(8.32)

Since the photons have a blackbody spectrum, with a photon number density
nγ given by Equation 8.23, we can combine Equations 8.32 and 8.23 to find

(8.33)

Substituting Equation 8.33 back into Equation 8.31, we finally find the
desired equation for X in terms of T and η:



(8.34)

This is a quadratic equation in X, whose positive root is

(8.35)

where

(8.36)

If we define the moment of recombination as the instant when  then
(assuming η = 6.1 × 10−10) the recombination temperature is

(8.37)

Because of the exponential dependence of S upon the temperature, the exact
value of η doesn’t strongly affect the value of Trec. On the Kelvin scale, kTrec
= 0.324 eV corresponds to a temperature Trec = 3760 K, slightly higher than
the melting point of tungsten.8 The temperature of the universe had a value T
= Trec = 3760 K at a redshift zrec = 1380, when the age of the universe, in the
Benchmark Model, was trec = 250 000 yr.

Recombination was not an instantaneous process; it happened sufficiently
gradually that at any given instant, the assumption of kinetic and chemical
equilibrium is a reasonable approximation. However, as shown in Figure 8.5,
it did proceed fairly rapidly by cosmological standards. The fractional
ionization went from X = 0.9 at a redshift z = 1480 to X = 0.1 at a redshift z =
1260. In the Benchmark Model, the time that elapses from X = 0.9 to X = 0.1
is Δt ≈ 70 000 yr ≈ 0.28trec.



Figure 8.5 Fractional ionization X as a function of redshift during the epoch of
recombination. A baryon-to-photon ratio η = 6.1×10−10 is assumed. Redshift decreases, and
thus time increases, from left to right.

Since the number density of free electrons drops rapidly during the epoch
of recombination, the time of photon decoupling comes soon after the time of
recombination. The rate of photon scattering, when the hydrogen is partially
ionized, is

(8.38)

Using Ωbary,0 = 0.048, the numerical value of the scattering rate is

(8.39)

While recombination is taking place, the universe is matter-dominated, so the
Hubble parameter is given by the relation



(8.40)

Using Ωm,0 = 0.31, the numerical value of the Hubble parameter during the
epoch of recombination is

(8.41)

The redshift of photon decoupling is found by setting Γ = H, or (combining
Equations 8.39 and 8.41),

(8.42)

Using the value of X(z) given by the Saha equation (shown in Figure 8.5), the
redshift of photon decoupling is found to be zdec = 1120. In truth, the exact
redshift of photon decoupling is somewhat smaller than this value. The Saha
equation assumes that the reaction  is in equilibrium.
However, when Γ starts to drop below H, the photoionization reaction is no
longer in equilibrium. As a consequence, at redshifts smaller than ∼ 1200, the
fractional ionization X is larger than would be predicted by the Saha equation,
and the decoupling of photons is therefore delayed. Without going into the
details of the nonequilibrium physics, let’s content ourselves by quoting the
result zdec = 1090, corresponding to a temperature Tdec = 2970 K, when the
age of the universe was tdec = 371 000 yr in the Benchmark Model.

When we examine the CMB with our microwave antennas, the photons
we collect have been traveling straight toward us since the last time they
scattered from a free electron. During a brief time interval t → t + dt, the
probability that a photon undergoes a scattering is dP = Γ(t)dt, where Γ(t) is
the scattering rate at time t. Thus, if we detect a CMB photon at time t0, the
expected number of scatterings it has undergone since an earlier time t is

(8.43)



The dimensionless number τ is the optical depth. The time t for which τ = 1 is
the time of last scattering, and represents the time that has elapsed since a
typical CMB photon last scattered from a free electron. If we change the
variable of integration in Equation 8.43 from t to a, we find that

(8.44)

using the fact that  Alternatively, we can find the optical depth as a
function of redshift by making the substitution 1 + z = 1/a:

(8.45)

Here, we have made use of Equations 8.39 and 8.41. As it turns out, the last
scattering of a typical CMB photon occurs after the photoionization reaction 

 falls out of equilibrium, so the Saha equation doesn’t
strictly apply. To sufficient accuracy for our purposes, we can state that the
redshift of last scattering was comparable to the redshift of photon
decoupling: zls ≈ zdec ≈ 1090. Not all the CMB photons underwent their last
scattering simultaneously; the universe doesn’t choreograph its microphysics
that well. If we scoop up two photons from the CMB, one may have
undergone its last scattering at z = 1140, while the other may have scattered
more recently, at z = 1040. Thus, the “last scattering surface” is really more
of a “last scattering layer”; just as we can see a little way into a fog bank here
on Earth, we can see a little way into the “electron fog” that hides the early
universe from our direct view.

The relevant times of various events around the time of recombination are
shown in Table 8.1. For purposes of comparison, the table also contains the
time of radiation–matter equality, emphasizing the fact that recombination,
photon decoupling, and last scattering took place when the universe was
matter-dominated. When we look at the cosmic microwave background, we
are getting an intriguing glimpse of the universe as it was when it was only
one part in 37 000 of its present age.



Table 8.1 Events in the early universe.

Event Redshift Temperature (K) Time (Myr)
Radiation–matter equality 3440 9390 0.050
Recombination 1380 3760 0.25
Photon decoupling 1090 2970 0.37
Last scattering 1090 2970 0.37

8.4 Temperature Fluctuations
The dipole distortion of the cosmic microwave background, shown in Figure
8.2, results from the fact that the universe is not perfectly homogeneous today
(z = 0). Because we are gravitationally accelerated toward the nearest large
lumps of matter, we see a Doppler shift in the radiation of the CMB. The
distortions on a smaller angular scale, shown in Figure 8.3, tell us that the
universe was not perfectly homogeneous at the time of last scattering (z ≈
1090). The angular size of the temperature fluctuations reflects in part the
physical size of the density and velocity fluctuations at z ≈ 1090.

The angular size δθ of a temperature fluctuation in the CMB is related to a
physical size ℓ on the last scattering surface by the relation

(8.46)

where dA is the angular-diameter distance to the last scattering surface. Since
the last scattering surface is at a redshift zls = 1090 ≫ 1, a good
approximation to dA is given by Equation 6.40:

(8.47)

In the Benchmark Model, the current horizon distance is dhor(t0) ≈ 14 000
Mpc, so the angular-diameter distance to the surface of last scattering is



(8.48)

Thus, fluctuations on the last scattering surface with an observed angular size
δθ had a physical size

(8.49)

at the time of last scattering. The smallest fluctuations resolved by the Planck
satellite (Figure 8.3) have an angular size δθ ≈ 5 arcmin. This corresponds to
a physical size of ℓ ≈ 18 kpc at the time of last scattering, or ℓ(1 + zls) ≈ 20
Mpc today. A sphere with this radius has a baryon mass Mbary ≈ 5 × 1013 M⊙,
about that of a cluster of galaxies. (The Coma cluster has Mbary ∼ 2 × 1014

M⊙, but it is a very rich cluster.)
Consider the density fluctuations δT/T of the cosmic microwave

background, as shown in Figure 8.3. Since δT/T is defined on the surface of a
sphere – the celestial sphere in this case – it is useful to expand it in spherical
harmonics:

(8.50)

where Ylm(θ, ϕ) are the usual spherical harmonic functions. What concerns
cosmologists is not the exact pattern of hot spots and cold spots on the sky,
but their statistical properties. The most important statistical property of δT/T
is the correlation function C(θ). Consider two points on the last scattering
surface. Relative to an observer, they are in the directions n̂ and n̂′, and are
separated by an angle θ given by the relation  To find the
correlation function C(θ), multiply together the values of δT/T at the two
points, then average the product over all points separated by the angle θ:



(8.51)

Using the expansion of δT/T in spherical harmonics, the correlation function
can be written in the form

(8.52)

where Pl are the usual Legendre polynomials:

(8.53)

and so forth. In this way, a measured correlation function C(θ) can be broken
down into its multipole moments Cl. The l = 0 (monopole) term of the
correlation function vanishes if we’ve defined the mean temperature
correctly. The l = 1 (dipole) term results primarily from the Doppler shift due
to our motion through space. For larger values of l, the termCl is a measure of
temperature fluctuations on an angular scale θ ∼ 180◦/l. Thus, the multipole l
is interchangeable, for all practical purposes, with the angular scale θ. The
moments with l ≥ 2 are of the most interest to astronomers, since they tell us
about the fluctuations present at the time of last scattering.

In presenting the results of CMB observations, it is customary to plot the
function

(8.54)

since this function tells us the contribution per logarithmic interval in l to the
total temperature fluctuation δT of the cosmic microwave background. Figure



8.6, which shows results from the Planck satellite, is a plot of ΔT as a
function of l. The detailed shape of the ΔT versus l curve contains a wealth of
information about the universe at the time of photon decoupling. In the next
section we will examine, very briefly, the physics behind the temperature
fluctuations, and how we can extract cosmological information from the
temperature anisotropy of the cosmic microwave background.

Figure 8.6 Temperature fluctuations ΔT of the CMB, as observed by Planck, expressed as a
function of the multipole l. The vertical dotted line shows lhor, the multipole corresponding
to the horizon size at last scattering. The horizontal dotted line shows the value ΔT ≈ 30 μK
at which ΔT levels off at small l. [data courtesy of Planck/ESA]

8.5 What Causes the Fluctuations?
At the time of last scattering, a particularly interesting length scale,
cosmologically speaking, is the horizon distance,



(8.55)

Since last scattering takes place long before the cosmological constant plays a
significant role in the expansion, we can use the scale factor appropriate for a
universe containing just radiation and matter, as given in Equation 5.110.
This gives a value for the horizon distance of

(8.56)

A patch of the last scattering surface with this physical size will have an
angular size, as seen from Earth, of

(8.57)

This angle corresponds to a multipole lhor ≈ 160, indicated as the vertical
dotted line in Figure 8.6.

The behavior of the ΔT versus l curve is notably different on large angular
scales than on smaller scales. On large angular scales, the value of ΔT levels
off at a nearly constant value ΔT ≈ 30 μK in the limit that θ > 4θhor, or l < 40.
By contrast, on angular scales smaller than θhor, the ΔT curve shows a
landscape of peaks and valleys rather than a level plateau. The highest peak,
at l ≈ 220, is called the “first peak.” The second and third peaks, at l ≈ 520
and l ≈ 800, are lower in amplitude. The difference in behavior between the
plateau at small l and the peaks and valleys at larger l results from the fact
that fluctuations on large angular scales, with θ > θhor, have a different
physical cause than the fluctuations with θ < θhor.

Consider first the large scale fluctuations – those with angular size θ >θhor.
These temperature fluctuations arise from the gravitational effect of density
fluctuations in the distribution of nonbaryonic dark matter. The density of
nonbaryonic dark matter at the time of last scattering, since εdm ∝ a−3 ∝ (1
+ z)3, was



(8.58)

equivalent to a mass density ρ ∼ 3 × 10−18 kg m−3. The density of baryonic
matter at the time of last scattering was

(8.59)

The density of photons at the time of last scattering, since 
 was

(8.60)

Thus, at the time of last scattering, εdm > εγ > εbary, with dark matter, photons,
and baryons having energy densities in the ratio 5.5 : 1.24 : 1. The
nonbaryonic dark matter dominated the energy density ε, and hence the
gravitational potential, of the universe at the time of last scattering.

Suppose that the density of the nonbaryonic dark matter at the time of last
scattering was not perfectly homogeneous, but varied as a function of
position. Then we could write the energy density of the dark matter as

(8.61)

where ε is the spatially averaged energy density of the nonbaryonic dark
matter, and δε is the local deviation from the mean. In the Newtonian
approximation, the spatially varying component of the energy density, δε,
gives rise to a spatially varying gravitational potential δΦ. The link between
δε and δΦ is Poisson’s equation:

(8.62)

Unless the distribution of dark matter were perfectly smooth at the time of
last scattering, the fluctuations in its density would necessarily have given



rise to fluctuations in the gravitational potential.
Consider the fate of a CMB photon that happens to be at a local minimum

of the potential at the time of last scattering. (Minima in the gravitational
potential are known colloquially as “potential wells.”) In climbing out of the
potential well, it loses energy, and consequently is redshifted. Conversely, a
photon that happens to be at a potential maximum when the universe became
transparent gains energy as it falls down the “potential hill,” and thus is
blueshifted. When we look at the last scattering surface on large angular
scales, cool (redshifted) spots correspond to minima in δΦ; hot (blueshifted)
spots correspond to maxima in δΦ. A detailed general relativistic calculation,
first performed by Sachs and Wolfe in 1967, tells us that

(8.63)

Thus, the temperature fluctuations on large angular scales (θ > θhor ≈ 1.1◦)
give us a map of the potential fluctuations δΦ present at the time of last
scattering. In particular, the fact that the observed moments ΔT are constant
over a wide range of angular scales, from l ∼ 2 to l ∼ 40, tells us that the
potential fluctuations δΦ were constant over a wide range of physical scales.
The creation of temperature fluctuations by variations in the gravitational
potential is known generally as the Sachs–Wolfe effect, and the region of the
ΔT curve where the temperature fluctuations are nearly constant (l < 40) is
known as the Sachs–Wolfe plateau.

On smaller scales (θ < θhor), the origin of the temperature fluctuations in
the CMB is complicated by the behavior of the photons and baryons.
Consider the situation immediately prior to photon decoupling. The photons,
electrons, and protons together make a single photon-baryon fluid, whose
energy density is only 40 percent that of the dark matter. Thus, the photon-
baryon fluid moves primarily under the gravitational influence of the dark
matter, rather than under its own self-gravity. If the photon-baryon fluid finds
itself in a potential well of the dark matter, it will start to fall toward the
center of the well. However, as the photon-baryon fluid is compressed by
gravity, its pressure starts to rise along with its increasing density.
Eventually, the pressure is sufficient to cause the fluid to expand outward. As
the expansion continues, the pressure drops until gravity causes the photon-



baryon fluid to fall inward again. As the cycle continues, the inward and
outward oscillations of the photon-baryon fluid are called acoustic
oscillations, since they represent a standing sound wave.

If the photon-baryon fluid within a potential well is at maximum
compression at the time of photon decoupling, its density will be higher than
average, and since  the liberated photons will be hotter than average.
Conversely, if the photon-baryon fluid within a potential well is at maximum
expansion at the time of decoupling, the liberated photons will be slightly
cooler than average. If the photon-baryon fluid is in the process of expanding
or contracting at the time of decoupling, the Doppler effect will cause the
liberated photons to be cooler or hotter than average, depending on whether
the photon-baryon fluid was moving away from our location or toward it at
the time of photon decoupling. Computing the exact shape of the ΔT versus l
curve expected in a particular model universe is a rather complicated chore.
Generally speaking, however, the first peak in the ΔT curve (at l ≈ 220 or θ ≈
0.8◦) represents the potential wells within which the photon-baryon fluid had
just reached maximum compression at the time of last scattering. These
potential wells have a size comparable to the sound horizon distance for the
photon-baryon fluid at the time of last scattering. The sound horizon distance
ds is the maximum proper distance that a sound wave in the photon-baryon
fluid can have traveled since the Big Bang. By analogy with the usual
horizon distance (Equation 8.55), the sound horizon distance at the time of
last scattering is

(8.64)

For most of the time prior to last scattering, the baryons were an insignificant
contaminant in the photon-baryon fluid. We can thus make the approximation
that the sound speed in the photon-baryon fluid was  the same as
that of a pure photon gas. With this approximation, the sound horizon
distance at last scattering was

(8.65)



Hot spots with this physical size have an angular size, as viewed by us today,
of

(8.66)

The location and the amplitude of the first peak in Figure 8.6 provide very
useful cosmological information. The angular size θpeak at which the peak
occurs must be similar to the angle θs subtended by the sound horizon
distance. However, the estimate for θs given in Equation 8.66 assumes a flat
universe. In a negatively curved universe (κ = −1), the angular size θ of an
object of known physical size at a known redshift is smaller than it is in a
positively curved universe (κ = +1). Thus, if the universe were negatively
curved, the first peak in ΔT would be shifted to a smaller angle; if the
universe were positively curved, the peak would be shifted to a larger angle.
The observed position of the first acoustic peak is consistent with κ = 0, or Ω0
= 1. Figure 8.7 shows the values of Ωm,0 and ΩΛ,0 permitted by the present
CMB data. Note that the contour that shows the best fit to the CMB data (the
black ellipse) is roughly perpendicular to the contour permitted by the type Ia
supernova results (the gray ellipse). The small overlap region between the
two results tells us that a spatially flat universe, with Ωm,0 ∼ 0.3 and ΩΛ,0 ∼
0.7, agrees with both the CMB results and the supernova results.



Figure 8.7 The elongated black ellipse represents the 95% confidence interval for the
values of Ωm,0 and ΩΛ,0 that best fit the Planck CMB data. For comparison, the gray ellipse
shows the 95% confidence interval from the supernova data, repeated from Figure 6.6.
[Anže Slosar & José Alberto Vázquez, BNL]

The amplitude of the first peak in the ΔT versus l plot also yields useful
cosmological knowledge. The amplitude is quite sensitive to the sound speed
cs of the photon-baryon fluid, with a lower speed giving a higher amplitude.
Since the sound speed is  and the equation-of-state parameter wpb
is in turn dependent on the baryon-to-photon ratio, the amplitude of the peak
is a useful diagnostic of the baryon density of the universe. Detailed analysis
of the ΔT curve yields a baryon-to-photon ratio

(8.67)

This value for η can be converted into a value for the current baryon density
by the relation



(8.68)

Since the majority of baryons are protons, we may write, to acceptable
accuracy,

(8.69)

This translates into a density parameter for baryons of

(8.70)

with most of the uncertainty in Ωbary,0 coming from the uncertainty in the
critical density εc,0.

Exercises
8.1 The purpose of this problem is to determine how changing the value of

the baryon-to-photon ratio, η, affects the recombination temperature in
the early universe. Plot the fractional ionization X as a function of
temperature, in the range 3000 K < T < 4500 K; first make the plot
assuming η = 4 × 10−10, then assuming η = 8 × 10−10. How much does
this change in η affect the computed value of the recombination
temperature Trec, if we define Trec as the temperature at which 

8.2 Assuming a baryon-to-photon ratio η = 6.1 × 10−10, at what temperature
T will there be one ionizing photon, with hf > Q = 13.6 eV, per baryon?
[Hint: the result of Exercise 2.5 will be useful.] Is the temperature you
calculate greater than or less than Trec = 3760 K?

8.3 Imagine that at the time of recombination, the baryonic portion of the
universe consisted entirely of 4He (that is, helium with two protons and
two neutrons in its nucleus). The ionization energy of helium (that is, the
energy required to convert neutral He to He+) is QHe = 24.6 eV. At what



temperature would the fractional ionization of the helium be 
Assume that η = 6 × 10−10 and that the number density of He++ is
negligibly small. [The relevant statistical weight factor for the ionization
of helium is gHe/(gegHe

+) = 1/4.]
8.4 What is the proper distance dp to the surface of last scattering? What is

the luminosity distance dL to the surface of last scattering? Assume that
the Benchmark Model is correct, and that the redshift of the last
scattering surface is zls = 1090.

1 Actually, much commoner than dirt, when you stop to think of it, since dirt is made of
baryons.

2 To give credit where it’s due, as early as 1948, Ralph Alpher and Robert Herman had
predicted the existence of cosmic background radiation with a temperature of “about 5
K.” However, their prediction had fallen into obscurity.

3 The South Pole is nearly 3 kilometers above sea level; one of the major challenges
facing the Amundsen and Scott expeditions was the arduous climb from the Ross Ice
Shelf to the central Antarctic plateau.

4 The stretched “yin-yang” pattern in Figure 8.2 represents the darker, cooler (yin?)
hemisphere of the sky and the hotter, brighter (yang?) hemisphere, distorted by the map
projection.

5 Cosmologists sometimes grumble that this should really be called the epoch of
“combination” rather than the epoch of “recombination,” since this is the very first time
when electrons and ions combined to form stable atoms.

6 Slightly cooler if you are using this book for recreational reading as you ski across the
Antarctic plateau.

7 Although this type of equilibrium is conventionally called “chemical” equilibrium, it can
apply to nuclear reactions (as we’ll see in the next chapter) as well as to chemical
reactions.

8 Not that there was any tungsten around back then to be melted.
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Nucleosynthesis and the Early Universe

The cosmic microwave background tells us a great deal about the state of the
universe at the time of last scattering (tls ≈ 0.37 Myr). However, the opacity
of the early universe prevents us from directly seeing what the universe was
like at t < tls. Looking at the last scattering surface is like looking at the
surface of a cloud, or the surface of the Sun; our curiosity is piqued, and we
wish to find out what conditions are like in the opaque regions so
tantalizingly hidden from our direct view.

Theoretically, many properties of the early universe should be quite
simple. For instance, when radiation is strongly dominant over matter, at
scale factors a ≪ arm ≈ 2.9 × 10−4, or times t ≪ trm ≈ 50 000 yr, the
expansion of the universe has the simple power-law form a(t) ∝ t1/2. The
temperature of the blackbody photons in the early universe, which decreases
as T ∝ a−1 as the universe expands, is given by the convenient relation

(9.1)

or equivalently

(9.2)

Thus the mean energy per photon was

(9.3)



The Large Hadron Collider (LHC), on the border between France and
Switzerland, accelerates protons to an energy E = 7 × 106 MeV = 7 TeV,
about 7500 times the rest energy of a proton. The LHC is a remarkable piece
of engineering; with a main ring 27 kilometers in diameter, it is sometimes
called the largest single machine in the world. However, when the universe
had an age of t ≈ 2 × 10−13 s, the average, run-of-the-mill particle energy was
equal to that attained by the LHC. Thus, the early universe is referred to as
“the poor man’s particle accelerator,” since it provided particles of very high
energy without running up an enormous electricity bill or requiring billions of
euros in funding.

9.1 Nuclear Physics and Cosmology
As the universe has expanded and cooled, the mean energy per photon has
dropped from Emean(tP) ∼ EP ∼ 1028 eV at the Planck time to Emean(t0) ∼ 10−3

eV at the present day. Thus, by studying the universe as it expands, we
sample 31 orders of magnitude in particle energy. Within this wide energy
range, some energies are of more interest than others to physicists. For
instance, to physicists studying recombination and photoionization, the most
interesting energy scale is the ionization energy of an atom. The ionization
energy of hydrogen is Q = 13.6 eV, as we have already noted. The ionization
energies of other elements (that is, the energy required to remove the most
loosely bound electron in the neutral atom) are roughly comparable; they
range from 24.6 eV for helium to 4 eV for heavy alkali metals like cesium.
Thus, atomic physicists, when considering the ionization of atoms, typically
deal with energies of ∼ 10 eV, in round numbers.

Nuclear physicists are concerned not with ionization and recombination
(removing or adding electrons to an atom), but with the much higher energy
processes of fission and fusion (splitting or merging atomic nuclei). An
atomic nucleus contains Z protons and N neutrons, where Z ≥ 1 and N ≥ 0.
Protons and neutrons are collectively called nucleons. The total number of
nucleons within an atomic nucleus is called the mass number, and is given by
the formula A = Z+N. The proton number Z of a nucleus determines the
atomic element to which that nucleus belongs. For instance, hydrogen (H)
nuclei all have Z = 1, helium (He) nuclei have Z = 2, lithium (Li) nuclei have



Z = 3, beryllium (Be) nuclei have Z = 4, and so on, through the complete
periodic table. Although all atoms of a given element have the same number
of protons in their nuclei, different isotopes of an element can have different
numbers of neutrons. A particular isotope of an element is designated by
prefixing the mass number A to the symbol for that element. For instance, a
standard hydrogen nucleus, with one proton and no neutrons, is symbolized
as 1H. (Since an ordinary hydrogen nucleus is nothing more than a proton, we
may also write p in place of 1H when considering nuclear reactions.) Heavy
hydrogen, or deuterium, contains one proton and one neutron, and is
symbolized as 2H. (Since the deuterium nucleus is mentioned frequently in
the context of nuclear fusion, it has its own name, the “deuteron,” and its own
special symbol, D.) Ordinary helium contains two protons and two neutrons,
and is symbolized as 4He.

The binding energy B of a nucleus is the energy required to pull it apart
into its component protons and neutrons. Equivalently, it is the energy
released when a nucleus is fused together from individual protons and
neutrons. For instance, when a neutron and a proton are bound together to
form a deuteron, an energy of BD = 2.22MeV is released:

(9.4)

The deuteron is not very tightly bound, compared to other atomic nuclei.
Figure 9.1 plots the binding energy per nucleon (B/A) for atomic nuclei with
different mass numbers. Note that 4He, with a total binding energy of B =
28.30 MeV, and a binding energy per nucleon of B/A = 7.07MeV, is
relatively tightly bound, compared to other light nuclei (that is, nuclei with A
≤ 10). The most tightly bound nuclei are those of 56Fe, 58Fe, and 62Ni, which
all have B/A ≈ 8.79 MeV. Thus, nuclei more massive than iron or nickel can
release energy by fission – splitting into lighter nuclei. Nuclei less massive
than iron or nickel can release energy by fusion – merging into heavier
nuclei.



Figure 9.1 Binding energy per nucleon (B/A) as a function of the number of nucleons (A).
Stable isotopes are shown as solid dots; the open dots represent the isotopes 3H and 7Be.
[data from AME2012 atomic mass evaluation]

Just as studies of ionization and recombination deal with an energy scale
of ∼ 10 eV (a typical ionization energy), so studies of nuclear fusion and
fission deal with an energy scale of ∼ 8 MeV (a typical binding energy per
nucleon). Moreover, just as electrons and protons combined to form neutral
hydrogen atoms when the temperature dropped sufficiently far below the
ionization energy of hydrogen (Q = 13.6 eV), so protons and neutrons must
have fused to form deuterons when the temperature dropped sufficiently far
below the binding energy of deuterium (BD = 2.22MeV). The epoch of
recombination was thus preceded by an epoch of nuclear fusion, commonly
called the epoch of Big Bang nucleosynthesis (BBN). Nucleosynthesis in the
early universe starts by the fusion of neutrons and protons to form deuterons,
then proceeds to form heavier nuclei by successive acts of fusion. Since the
binding energy of deuterium is larger than the ionization energy of hydrogen
by a factor BD/Q = 1.6 × 105, we would expect, as a rough estimate, the
synthesis of deuterium to occur at a temperature 1.6 × 105 times higher than
the recombination temperature Trec = 3760 K. That is, deuterium synthesis



occurred at a temperature Tnuc ≈ 1.6 × 105(3760 K) ≈ 6 × 108 K,
corresponding to a time tnuc ≈ 300 s. This estimate, as we’ll see when we do
the detailed calculations, gives a temperature slightly too low, but it certainly
gives the right order of magnitude. As indicated in the title of Steven
Weinberg’s classic book, The First Three Minutes, the entire saga of Big
Bang nucleosynthesis takes place when the universe is only a few minutes
old.

One thing we can say about Big Bang nucleosynthesis, after taking a look
at the present-day universe, is that it was shockingly inefficient. From an
energy viewpoint, the preferred universe would be one in which the baryonic
matter consisted of an iron-nickel alloy. Obviously, we do not live in such a
universe. Currently, three-fourths of the baryonic component (by mass) is
still in the form of unbound protons, or 1H. Moreover, when we look for
nuclei heavier than 1H, we find that they are primarily 4He, a relatively
lightweight nucleus; iron and nickel provide only 0.15% of the baryonic mass
of our galaxy. The primordial helium fraction of the universe (that is, the
helium fraction before nucleosynthesis begins in stars) is usually expressed as
the dimensionless number

(9.5)

That is, Yp is the mass density of 4He divided by the mass density of all the
baryonic matter. The outer regions of the Sun have a helium mass fraction Y
= 0.27. However, the Sun is made of recycled interstellar gas, which was
contaminated by helium formed in earlier generations of stars. When we look
at astronomical objects of different sorts, we find a minimum value of Y =
0.24. That is, baryonic objects such as stars and gas clouds are all at least 24
percent helium by mass.1

9.2 Neutrons and Protons
The basic building blocks for nucleosynthesis are neutrons and protons. The
rest energy of a neutron is greater than that of a proton by an amount



(9.6)

A free neutron is unstable. It decays through the emission of an electron and
an electron antineutrino,

(9.7)

with a decay time τn = 880 s. That is, if you start with a population of free
neutrons, after a time t, a fraction f = exp(−t/τn) will remain.2 Since the
energy Qn released by the decay of a neutron into a proton is greater than the
rest energy of an electron (mec2 = 0.51 MeV), the remainder of the energy is
carried away by the kinetic energy of the electron and the energy of the
electron antineutrino. With a decay time of only fifteen minutes, the existence
of a free neutron is as fleeting as fame; once the universe was several hours
old, it contained essentially no free neutrons. However, a neutron bound into
a stable atomic nucleus is preserved against decay. Neutrons are still around
today because they’ve been tied up in deuterium, helium, and other atoms.

Let’s consider the state of the universe when its age was t = 0.1 s. At that
time, the temperature was T ≈ 3 × 1010 K, and the mean energy per photon
was Emean ≈ 10 MeV. This energy is much greater than the rest energy of an
electron or positron, so there were positrons as well as electrons present at t =
0.1 s, created by pair production:

(9.8)

At t = 0.1 s, neutrinos were still coupled to the baryonic matter, and neutrons
and protons could convert freely back and forth through the interactions

(9.9)

and



(9.10)

At this early time, all particles, including protons and neutrons, were in
kinetic equilibrium, at a temperature kT ≈ 3 MeV ≪ mpc2. Thus, the number
density of neutrons and protons can be found from Equation 8.26, which
gives the correct number density for nonrelativistic particles in kinetic
equilibrium. For neutrons,

(9.11)

and for protons,3

(9.12)

Since the statistical weights of protons and neutrons are equal, with gp =
gn = 2, the neutron-to-proton ratio, from Equations 9.11 and 9.12, is

(9.13)

The above equation can be simplified. First, (mn/mp)3/2 = 1.002; there will be
no great loss in accuracy if we set this factor equal to one. Second, the
difference in rest energy of the neutron and proton is (mn −mp)c2 = Qn = 1.29
MeV. Thus, the equilibrium neutron-to-proton ratio has the particularly
simple form

(9.14)



illustrated as the solid line in Figure 9.2. At temperatures kT ≫ Qn = 1.29
MeV, corresponding to T ≫ 1.5 × 1010 Kand t ≪ 1 s, the number of neutrons
is nearly equal to the number of protons. However, as the temperature starts
to drop below 1.5×1010 K, protons begin to be strongly favored, and the
neutron-to-proton ratio plummets exponentially.

Figure 9.2 Neutron-to-proton ratio in the early universe. The solid line assumes
equilibrium; the dotted line gives the value after freezeout. Temperature decreases, and
thus time increases, from left to right.

If the neutrons and protons remained in equilibrium, then by the time the
universe was six minutes old, there would be only one neutron for every
million protons. However, neutrons and protons do not remain in equilibrium
for nearly that long. The interactions that mediate between neutrons and
protons in the early universe, shown in Equations 9.9 and 9.10, involve the
interaction of a baryon with a neutrino (or antineutrino). Neutrinos interact
with baryons via the weak nuclear force. At the temperatures we are
considering, the cross-sections for weak interactions are small. At
temperatures kT ∼ 1MeV, the cross-section for the interaction of a neutrino
with a proton or neutron is



(9.15)

(Compare this to the Thomson cross-section for the interaction of electrons
via the electromagnetic force: σe = 6.65 × 10−29 m2.) In the radiation-
dominated universe, the temperature falls at the rate T ∝ a(t)−1 ∝ t−1/2, and
thus the cross-sections for weak interactions diminish at the rate σw ∝ t−1.
The number density of neutrinos falls at the rate nν ∝ a(t)−3 ∝ t−3/2, and
hence the rate Γ with which neutrons and protons interact with neutrinos via
the weak force falls as a steep power of time:

(9.16)

Meanwhile, the Hubble parameter is decreasing only at the rate H ∝ t−1.
When Γ ≈ H, the neutrinos decouple from the neutrons and protons, and the
ratio of neutrons to protons is “frozen” (at least until the neutrons start to
decay, at times t ∼ τn). An exact calculation of the temperature Tfreeze at which
Γ = H requires a knowledge of the exact cross-section of the proton and
neutron for weak interactions. Using the best available laboratory
information, the “freezeout temperature” turns out to be kTfreeze = 0.8 MeV,
or Tfreeze = 9 × 109 K. The universe reaches this temperature when its age is
tfreeze ∼ 1 s. The neutron-to-proton ratio, once the temperature drops below
Tfreeze, is frozen at the value

(9.17)

At times tfreeze < t ≪ τn, there was one neutron for every five protons in the
universe.

The scarcity of neutrons relative to protons explains why Big Bang
nucleosynthesis was so incomplete, leaving three-fourths of the baryons in
the form of unfused protons. A neutron will fuse with a proton much more



readily than a proton will fuse with another proton. When a proton and
neutron fuse to form a deuteron, the reaction is straightforward:

(9.18)

There is no Coulomb barrier between the proton and neutron, and the reaction
is mediated by the strong nuclear force. Thus, it has a large cross-section and
a fast reaction rate. By contrast, the fusion of two protons to form a deuteron
is an inefficient two-step process. First, the protons must overcome the
Coulomb barrier between them to form a diproton, otherwise known as
helium-2:

(9.19)

A diproton is wildly unstable, and splits back to a pair of free protons with a
lifetime τsplit ∼ 10−23 s. There is, however, another possible decay mode for
the diproton. It can decay to a deuteron through the reaction

(9.20)

which is the required second step of proton–proton fusion. The presence of a
neutrino in Equation 9.20 tells us that, like the decay of a free neutron
(Equation 9.7), it involves the weak nuclear force. The lifetime for decay
through the reaction in Equation 9.20 has not been directly measured.
However, decays that happen via the weak nuclear force all have relatively
long lifetimes, with τweak > 10−2 s. Given the huge disparity between the
lifetimes of the two possible decay modes for the diproton, the probability
that a diproton will decay to a deuteron rather than back to a pair of free
protons is tiny: P ≈ τsplit/τweak < 10−21.

It’s possible, given enough time, to coax protons into fusing with each
other. It’s happening in the Sun, for instance, even as you read this sentence.
However, fusion in the Sun is a very slow process. If you pick out any
particular proton in the Sun’s core, it has only one chance in ten billion of
being fused into a deuteron during the next year, despite forming short-lived



diprotons millions of times per second. The core of the Sun, though, is a
stable environment; it’s in hydrostatic equilibrium, and its temperature and
density change only slowly with time. In the early universe, by strong
contrast, the temperature drops as T ∝ t−1/2 and the density of baryons drops
as nbary ∝ t−3/2. Big Bang nucleosynthesis is a race against time. After less
than an hour, the temperature and density have dropped too low for fusion to
occur.

Given the alacrity of neutron–proton fusion when compared to the
leisurely rate of proton–proton fusion, we can state, as a lowest order
approximation, that BBN proceeds until every free neutron is bonded into an
atomic nucleus, with the leftover protons remaining solitary.4 In this
approximation, we can compute the maximum possible value of Yp, the
fraction of the baryon mass in the form of 4He. To compute the maximum
possible value of Yp, suppose that every neutron present after the proton–
neutron freezeout is incorporated into a 4He nucleus. Given a neutron-to-
proton ratio of nn/np = 1/5, we can consider a representative group of 2
neutrons and 10 protons. The 2 neutrons can fuse with 2 of the protons to
form a single 4He nucleus. The remaining 8 protons, though, will remain
unfused. The mass fraction of 4He will then be

(9.21)

More generally, if f ≡ nn/np, with 0 ≤ f ≤ 1, then the maximum possible value
of Yp is Ymax = 2f /(1 + f).

If the observed value of Yp = 0.24 were greater than the predicted Ymax,
that would be a cause for worry; it might mean, for example, that we didn’t
really understand the process of proton–neutron freezeout. However, the fact
that the observed value of Yp is less than Ymax is not worrisome; various
factors act to reduce the actual value of Yp below its theoretical maximum.
First, if nucleosynthesis didn’t take place immediately after freezeout at t ≈ 1
s, then the spontaneous decay of neutrons would inevitably lower the
neutron-to-proton ratio, and thus reduce the amount of 4He produced. Next, if
some neutrons escape fusion altogether, or end in nuclei lighter than 4He



(such as D or 3He), they will not contribute to Yp. Finally, if nucleosynthesis
goes on long enough to produce nuclei heavier than 4He, that too will reduce
Yp.

In order to compute Yp accurately, as well as the abundances of other
isotopes, it will be necessary to consider the process of nuclear fusion in
more detail. Fortunately, much of the statistical mechanics we will need is a
rehash of what we used when studying recombination.

9.3 Deuterium Synthesis
Let’s move on to the next stage of Big Bang nucleosynthesis, just after
proton– neutron freezeout is complete. The time is t ≈ 2 s. The neutron-to-
proton ratio is nn/np = 0.2. The neutrinos, which ceased to interact with
electrons about the same time they stopped interacting with neutrons and
protons, are now decoupled from the rest of the universe. The photons,
however, are still strongly coupled to the protons and neutrons. Big Bang
nucleosynthesis takes place through a series of two-body reactions, building
heavier nuclei step by step. The essential first step in BBN is the fusion of a
proton and a neutron to form a deuteron:

(9.22)

When a proton and a neutron fuse, the energy released (and carried away by a
gamma-ray photon) is the binding energy of a deuteron:

(9.23)

Conversely, a photon with energy ≥ BD can photodissociate a deuteron into
its component proton and neutron. The reaction shown in Equation 9.22
should have a haunting familiarity if you’ve just read Chapter 8; it has the
same structural form as the reaction governing the recombination of
hydrogen:



(9.24)

A comparison of Equation 9.22 with Equation 9.24 shows that in each case,
two particles become bound together to form a composite object, with the
excess energy carried away by a photon. In the case of nucleosynthesis, a
proton and neutron are bonded by the strong nuclear force to form a deuteron,
with a gamma-ray photon being emitted. In the case of photoionization, a
proton and electron are bonded by the electromagnetic force to form a neutral
hydrogen atom, with an ultraviolet photon being emitted. A major difference
between nucleosynthesis and recombination, of course, is between the energy
scales involved.5

Despite the difference in energy scales, many of the equations used to
analyze recombination can be re-used to analyze deuterium synthesis.
Around the time of recombination, for instance, photoionization was in
chemical equilibrium with radiative recombination (Equation 9.24). As a
consequence, the relative numbers of free protons, free electrons, and neutral
hydrogen atoms are given by the Saha equation,

(9.25)

which tells us that neutral hydrogen is favored in the limit kT → 0, and that
ionized hydrogen is favored in the limit kT → ∞. Around the time of
deuterium synthesis, neutron–proton fusion was in chemical equilibrium with
photodissociation of deuterons (Equation 9.22). As a consequence, the
relative numbers of free protons, free neutrons, and deuterons are given by an
equation directly analogous to Equation 8.28:

(9.26)

From Equation 9.23, we can make the substitution [mp + mn − mD]c2 = BD.
The statistical weight of the deuteron is gD = 3, in comparison to gp = gn = 2
for a proton or neutron. To acceptable accuracy, we may write mp = mn =



mD/2. These substitutions yield the nucleosynthetic equivalent of the Saha
equation,

(9.27)

which tells us that deuterium is favored in the limit kT → 0, and that free
protons and neutrons are favored in the limit kT → ∞.

To define a precise temperature Tnuc at which the nucleosynthesis of
deuterium takes place, we need to define what we mean by “the
nucleosynthesis of deuterium.” Just as recombination takes a finite length of
time, so does nucleosynthesis. It is useful, though, to define Tnuc as the
temperature at which nD/nn = 1; that is, the temperature at which half the free
neutrons have been fused into deuterons. As long as Equation 9.27 holds true,
the deuteron-to-neutron ratio can be written as

(9.28)

We can write the deuteron-to-neutron ratio as a function of T and the baryon-
to-photon ratio η if we make some simplifying assumptions. Even today, we
know that ∼ 75% of all the baryons in the universe are in the form of unbound
protons. Before the start of deuterium synthesis, five out of six baryons (or ∼
83%) were in the form of unbound protons. Thus, if we don’t want to be
fanatical about accuracy, we can write

(9.29)

using Equation 8.23 for the number density nγ of blackbody photons. By
substituting Equation 9.29 into Equation 9.28, we find that the deuteron-to-
neutron ratio is a relatively simple function of temperature:



(9.30)

This function is plotted in Figure 9.3, assuming a baryon-to-photon ratio η =
6.1 × 10−10. The temperature Tnuc of deuterium nucleosynthesis can be found
by solving the equation

(9.31)

Figure 9.3 The deuteron-to-neutron ratio during the epoch of deuterium synthesis. The
nucleosynthetic equivalent of the Saha equation (Equation 9.27) is assumed to hold true.
Temperature decreases, and thus time increases, from left to right.

With mnc2 = 939.6 MeV, BD = 2.22 MeV, and η = 6.1 × 10−10, the
temperature of deuterium synthesis is kTnuc ≈ 0.066 MeV ≈ BD/34,
corresponding to Tnuc ≈ 7.6 × 108 K. The temperature drops to this value



when the age of the universe is tnuc ≈ 200 s.
Note that the time delay until the start of nucleosynthesis, tnuc ≈ 200 s, is

not negligible compared to the decay time of the neutron, τn = 880 s. By the
time nucleosynthesis actually gets underway, neutron decay has slightly
decreased the neutron-to-proton ratio from nn/np = 1/5 to

(9.32)

This in turn lowers the maximum possible 4He mass fraction from Ymax ≈
0.33 to Ymax ≈ 0.27.

9.4 Beyond Deuterium
The deuteron-to-neutron ratio nD/nn does not remain indefinitely at the
equilibrium value given by Equation 9.30. Once a significant amount of
deuterium forms, many possible nuclear reactions are available. For instance,
a deuteron can fuse with a proton to form 3He:

(9.33)

Alternatively, it can fuse with a neutron to form 3H, also known as tritium:

(9.34)

Tritium is unstable; it spontaneously decays to 3He, emitting an electron and
an electron antineutrino in the process. However, the decay time of tritium is
approximately 18 years; during the brief time that Big Bang nucleosynthesis
lasts, tritium can be regarded as effectively stable.

Deuterons can also fuse with each other to form 4He:



(9.35)

However, it is more likely that the interaction of two deuterons will end in the
formation of a tritium nucleus (with the emission of a proton),

(9.36)

or the formation of a 3He nucleus (with the emission of a neutron),

(9.37)

A large amount of 3H or 3He is never present during the time of
nucleosynthesis. Soon after they are formed, they are converted to 4He by
reactions such as

(9.38)

None of the post-deuterium reactions outlined in Equations 9.33 through 9.38
involve neutrinos; they all involve the strong nuclear force, and have large
cross-sections and fast reaction rates. Thus, once nucleosynthesis begins, D,
3H, and 3He are all efficiently converted to 4He.

Once 4He is reached, however, the orderly march of nucleosynthesis to
heavier and heavier nuclei reaches a roadblock. For such a light nucleus, 4He
is exceptionally tightly bound, as illustrated in Figure 9.1. By contrast, there
are no stable nuclei with A = 5. If you try to fuse a proton or neutron to 4He,
it won’t work; 5He and 5Li are not stable nuclei. Thus, 4He is resistant to
fusion with protons and neutrons. Small amounts of 6Li and 7Li, the two
stable isotopes of lithium, are made by reactions such as



(9.39)

and

(9.40)

In addition, small amounts of 7Be are made by reactions such as

(9.41)

The synthesis of nuclei with A > 7 is hindered by the absence of stable nuclei
with A = 8. For instance, if 8Be is made by the reaction

(9.42)

then the 8Be nucleus falls back apart into a pair of 4He nuclei with a decay
time of only τ = 10−16 s.

The bottom line is that once deuterium begins to be formed, fusion up to
the tightly bound 4He nucleus proceeds very rapidly. Fusion of heavier nuclei
occurs much less rapidly. The precise yields of the different isotopes
involved in BBN are customarily calculated using a fairly complex computer
code. The complexity is necessary because of the large number of possible
reactions that can occur once deuterium has been formed, all of which have
temperature-dependent cross-sections. Thus, there’s a good deal of
bookkeeping involved. The results of a typical BBN code, which follows the
mass fraction of different isotopes as the universe expands and cools, is
shown in Figure 9.4. At t < 10 s, when T > 3 × 109 K, almost all the baryonic
matter is in the form of free protons and free neutrons. As the deuterium
density climbs upward, however, the point is eventually reached where
significant amounts of 3H, 3He, and 4He are formed. By t ∼ 1000 s, when the
temperature has dropped to T ∼ 3 × 108 K, Big Bang nucleosynthesis is
essentially over. Nearly all the baryons are in the form of free protons or 4He
nuclei. The small residue of free neutrons decays into protons. Small amounts



of D, 3H, and 3He are left over, a tribute to the incomplete nature of Big Bang
nucleosynthesis. (3H later decays to 3He.) Very small amounts of 6Li, 7Li,
and 7Be are made. (7Be is later converted to 7Li by electron capture: 7Be + e−

→ 7Li + νe.)

Figure 9.4 Mass fraction of nuclei as a function of time during the epoch of
nucleosynthesis. Time increases, and thus temperature decreases, from left to right. [data
courtesy of Alain Coc]

The yields of D, 3He, 4He, 6Li, and 7Li depend on various physical
parameters. Most importantly, they depend on the baryon-to-photon ratio η.
Figure 9.5 shows the abundance of various elements produced by Big Bang
nucleosynthesis, plotted as a function of η. A high baryon-to-photon ratio
increases the temperature Tnuc at which deuterium synthesis occurs, and
hence gives an earlier start to Big Bang nucleosynthesis. Since BBN is a race
against the clock as the density and temperature of the universe drop, getting
an earlier start means that nucleosynthesis is more efficient at producing 4He,
leaving less D and 3He as leftovers. The dependence of 7Li on η is more
complicated. Within the range of η plotted in Figure 9.5, the direct production



of 7Li by the fusion of 4He and 3H is a decreasing function of η, while the
indirect production of 7Li by 7Be electron capture is an increasing function of
η. The net result is a minimum in the predicted density of 7Li at η ≈ 3 × 10−10.

Figure 9.5 The mass fraction of 4He, and the number densities of D, 3He, and 7Li
expressed as a fraction of the H number density. The width of each line represents the 1σ
confidence interval in the density. [Cyburt et al. 2016, Rev. Mod. Phys., 88, 015004]

To determine the value of η using the predictions of Big Bang
nucleosynthesis, it is necessary to make accurate observations of the
primordial densities of the light elements; that is, the densities before
nucleosynthesis in stars started to alter the chemical composition of the
universe. In determining the value of η, it is most useful to determine the
primordial abundance of deuterium. This is because the deuterium abundance
is strongly dependent on η in the range of interest. Thus, determining the
deuterium abundance with only modest accuracy will enable us to determine
η fairly well. By contrast, the primordial helium fraction, Yp, has only a weak
dependence on η for the range of interest, as shown in Figure 9.5. Thus,
determining η with a fair degree of accuracy would require measuring Yp with



fanatic precision.
Deuterium abundances are customarily given as the ratio of the number of

deuterium atoms to the number of ordinary hydrogen atoms (D/H). In the
local interstellar gas, within ∼ 50 pc of the Sun, the deuterium-to-hydrogen
ratio is of D/H ≈ 1.6×10−5. However, deuterium is very easily destroyed in
stars. Since the interstellar gas is contaminated by deuterium-depleted gas
that has been cycled through stellar interiors, we expect the primordial
deuterium-to-hydrogen ratio was D/H > 1.6 × 10−5. Currently, the best way to
find the primordial value of D/H is to look at the spectra of distant quasars. In
the search for deuterium, we don’t care what a quasar actually is, or how
much deuterium is inside the quasar itself; instead, we just want to use the
very luminous quasar as a flashlight to illuminate the intergalactic gas clouds
that lie between it and us. If an intergalactic gas cloud contains no detectable
stars, and has very low levels of elements heavier than lithium, we can hope
that its D/H value is close to the primordial value, and hasn’t been driven
downward by the effects of fusion within stars. Neutral hydrogen atoms
within these intergalactic clouds absorb photons whose energy corresponds to
the Lyman-α transition; that is, the transition of the atom’s electron from the
ground state (n = 1) to the next higher energy level (n = 2). In an ordinary
hydrogen atom (1H), the Lyman-α transition corresponds to a wavelength λH
= 121.567 nm. In a deuterium atom, the greater mass of the nucleus causes a
small isotopic shift in the electron’s energy levels. As a consequence, the
Lyman-α transition in deuterium corresponds to a slightly shorter
wavelength, λD = 121.534 nm. When we look at light from a quasar that has
passed through an intergalactic cloud at redshift zcl, we see a strong
absorption line at λH(1+zcl), due to absorption from ordinary hydrogen, and a
much weaker absorption line at λD(1 + zcl), due to absorption from deuterium.
Detailed studies of the strength of the absorption lines in the spectra of
different quasars give the ratio (D/H) = (2.53±0.04)×10−5. Using the results
of BBN calculations such as those plotted in Figure 9.5, this translates into a
baryon-to-photon ratio η = (6.0 ± 0.1) × 10−10, consistent with the value
found from the temperature fluctuations of the cosmic microwave
background (Equation 8.67).



9.5 Baryon–Antibaryon Asymmetry
The results of Big Bang nucleosynthesis tell us what the universe was like
when it was relatively hot (Tnuc ≈ 7.6 × 108 K) and dense:

(9.43)

This energy density corresponds to a mass density εnuc/c2 ≈ 2800 kg m−3, or
nearly three times the density of water. Remember, though, that the energy
density at the time of BBN was almost entirely in the form of radiation. The
mass density of baryons at the time of BBN was

(9.44)

A density of several grams per cubic meter is not outlandishly high, by
everyday standards; it’s equal to the density of the Earth’s stratosphere. A
mean photon energy of 2.7kTnuc ≈ 0.18MeV is not outlandishly high, by
everyday standards; you are bombarded with photons of about a third that
energy when you have your teeth X-rayed at the dentist. The physics of Big
Bang nucleosynthesis is well understood.

Some of the initial conditions for Big Bang nucleosynthesis, however, are
rather puzzling. The baryon-to-photon ratio, η ≈ 6×10−10, is a remarkably
small number; the universe seems to have a strong preference for photons
over baryons. It’s also worthy of remark that the universe seems to have a
strong preference for baryons over antibaryons. The laws of physics demand
the presence of antiprotons (p), containing two “anti-up” quarks and one
“anti-down” quark apiece, as well as antineutrons (n), containing one “anti-
up” quark and two “anti-down” quarks apiece.6 In practice, though, we find
that the universe has an extremely large excess of protons and neutrons over
antiprotons and antineutrons (and hence an excess of quarks over antiquarks).
At the time of Big Bang nucleosynthesis, the number density of antibaryons
(n and p) was tiny compared to the number density of baryons, which in turn
was tiny compared to the number density of photons. This imbalance, nantibary



≪ nbary ≪ nγ, has its origin in the physics of the very early universe.
When the temperature of the early universe was greater than kT ≈

150MeV, the quarks it contained were not confined within baryons and other
particles, as they are today, but formed a sea of free quarks (sometimes
referred to by the oddly culinary name of “quark soup”). During the first few
microseconds of the universe, when the quark soup was piping hot, quarks
and antiquarks were constantly being created by pair production and
destroyed by mutual annihilation:

(9.45)

where q and q could represent, for instance, an “up” quark and an “anti-up”
quark, or a “down” quark and an “anti-down” quark. During this period of
quark pair production, the numbers of “up” quarks, “anti-up” quarks, “down”
quarks, “anti-down” quarks, and photons were nearly equal to each other.
However, suppose there were a very tiny asymmetry between quarks and
antiquarks, such that

(9.46)

As the universe expanded and the quark soup cooled, quark–antiquark pairs
would no longer be produced. The existing antiquarks would then annihilate
with the quarks. However, because of the small excess of quarks over
antiquarks, there would be a residue of quarks with number density

(9.47)

Thus, if there were 800 000 003 quarks for every 800 000 000 antiquarks in
the early universe, three lucky quarks would be left over after the others
encountered antiquarks and were annihilated. The leftover quarks, however,
would be surrounded by 1.6 billion photons, the product of the annihilations.
After the three quarks were bound together into a baryon at kT ≈ 150 MeV,
the resulting baryon-to-photon ratio would be η ∼ 6 × 10−10.



Thus, the very strong asymmetry between baryons and antibaryons today
and the large number of photons per baryon are both products of a tiny
asymmetry between quarks and antiquarks in the early universe. The exact
origin of the quark–antiquark asymmetry in the early universe is still not
known. The physicist Andrei Sakharov, as far back as 1967, was the first to
outline the necessary physical conditions for producing a small asymmetry;
however, the precise mechanism by which the quarks first developed their
few-parts-per-billion advantage over antiquarks still remains to be found.

Exercises
9.1 Suppose the neutron decay time were τn = 88 s instead of τn = 880 s,

with all other physical parameters unchanged. Estimate Ymax, the
maximum possible mass fraction in 4He, assuming that all available
neutrons are incorporated into 4He nuclei.

9.2 Suppose the difference in rest energy of the neutron and proton were Qn
= (mn − mp)c2 = 0.129MeV instead of Qn = 1.29 MeV, with all other
physical parameters unchanged. Estimate Ymax, the maximum possible
mass fraction in 4He, assuming that all available neutrons are
incorporated into 4He nuclei.

9.3 The total luminosity of the stars in our galaxy is L ≈ 3 × 1010 L⊙.
Suppose that the luminosity of our galaxy has been constant for the past
10 Gyr. How much energy has our galaxy emitted in the form of
starlight during that time? Most stars are powered by the fusion of H
into 4He, with the release of 28.4 MeV for every helium nucleus formed.
How many helium nuclei have been created within stars in our galaxy
over the course of the past 10 Gyr, assuming that the fusion of H into
4He is the only significant energy source? If the baryonic mass of our
galaxy is M ≈ 1011 M⊙, by what amount has the helium fraction Y of our
galaxy been increased over its primordial value Y4 = 0.24?

9.4 In Section 9.2, it is asserted that the maximum possible value of the
primordial helium fraction is



(9.48)

where f = nn/np ≤ 1 is the neutron-to-proton ratio at the time of
nucleosynthesis. Prove that this assertion is true.

9.5 The typical energy of a neutrino in the cosmic neutrino background, as
pointed out in Chapter 5, is Eν ∼ kTν ∼ 5 × 10−4 eV. What is the
approximate interaction cross-section σw for one of these cosmic
neutrinos? Suppose you had a large lump of 56Fe (with density ρ = 7900
kg m−3). What is the number density of protons, neutrons, and electrons
within the lump of iron? How far, on average, would a cosmic neutrino
travel through the iron before interacting with a proton, neutron, or
electron? (Assume that the cross-section for interaction is simply σw,
regardless of the type of particle the neutrino interacts with.)

1 Condensed objects that have undergone chemical or physical fractionation can be much
lower in helium than this value. For instance, your helium fraction is ≪ 24%.

2 The half-life, the time it takes for half the neutrons to decay, is related to the decay time
by the relation t1/2 = τn ln 2 = 610 s.

3 I have left out the chemical potential terms, μn and μp, in Equations 9.11 and 9.12. At the
high energies present in the early universe, as it turns out, chemical potentials are small
enough to be safely neglected.

4 For the sake of completeness, note that the rate of neutron–neutron fusion is also
negligibly small compared to the rate of neutron–proton fusion. A “dineutron,” like a
diproton, is unstable, and has an overwhelming probability of decaying back to a pair of
free neutrons rather than decaying through the weak nuclear force to a deuteron.

5 As the makers of bombs have long known, you can release much more energy by fusing
atomic nuclei than by simply shuffling electrons around.

6 Note that an “anti-up” quark is not the same as a “down” quark; nor is “anti-down”
equivalent to “up.”
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Inflation and the Very Early Universe

The observed properties of galaxies, quasars, and supernovae at relatively
small redshift (z < 10) tell us about the universe at times t > 0.5 Gyr. The
properties of the cosmic microwave background tell us about the universe at
the time of last scattering (zls = 1090, tls = 0.37 Myr). The abundances of light
elements such as deuterium and helium tell us about the universe at the time
of Big Bang nucleosynthesis (znuc ≈ 3 × 108, tnuc ≈ 3 min). In fact, the
observation that primordial gas clouds are roughly one-fourth helium by
mass, rather than being all helium or all hydrogen, tells us that we have a fair
understanding of what was happening at the time of neutron–proton freezeout
(zfreeze ≈ 4 × 109, tfreeze ≈ 1 s).

So far, I’ve been emphasizing the successes of the Hot Big Bang model
for the universe. These successes are indeed impressive; understanding the
universe when it was just one second old is nothing to scorn. However, the
standard Hot Big Bang model, in which the early universe was radiation-
dominated, is not without its flaws. In particular, after the discovery of the
cosmic microwave background led to the widespread embrace of the Big
Bang, it was realized that the standard Hot Big Bang scenario had three
underlying problems. These nagging problems were called the flatness
problem, the horizon problem, and the monopole problem. The flatness
problem can be summarized by the statement, “The universe is nearly flat
today, and was even flatter in the past.” The horizon problem can be
summarized by the statement, “The universe is nearly isotropic and
homogeneous today, and was even more so in the past.” The monopole
problem can be summarized by the statement, “The universe is apparently
free of magnetic monopoles.” To see why these simple statements pose a
problem to the standard Hot Big Bang scenario, it is necessary to go a little
deeper into the physics of the expanding universe.



10.1 The Flatness Problem
Let’s start by examining the flatness problem. The spatial curvature of the
universe is related to the density parameter Ω by the Friedmann equation:

(10.1)

(Here we use the Friedmann equation in the form given by Equation 4.34.) At
the present moment, the density parameter and curvature are linked by the
equation

(10.2)

The CMB and type Ia supernova results (Figure 8.7), when combined with
other observations, give the constraint

(10.3)

implying R0 ≥ 14c/H0. Why should the value of Ω0 be so close to one today?
It could have had, for instance, the value Ω0 = 10−6 or Ω0 = 106 without
violating any laws of physics. We could of course invoke coincidence by
saying that the initial conditions for the universe just happened to produce Ω0
≈ 1 today. However, when you extrapolate the value of Ω(t) backward into
the past, the closeness of Ω to unity becomes more and more difficult to
dismiss as a coincidence.

By combining Equations 10.1 and 10.2, we find the equation that gives the
density parameter as a function of time:

(10.4)



When the universe was dominated by radiation and matter, at times t ≪ tmΛ ≈
10 Gyr, the Hubble parameter was given by Equation 5.108:

(10.5)

Thus, the density parameter evolved at the rate

(10.6)

During the period when the universe was dominated by radiation and matter,
the deviation of Ω from one was constantly growing. During the radiation-
dominated phase,

(10.7)

During the later matter-dominated phase,

(10.8)

Suppose, as the available evidence indicates, that the universe is described by
a model close to the Benchmark Model, with Ωr,0 ≈ 9.0 × 10−5, Ωm,0 ≈ 0.31,
and ΩΛ,0 ≈ 0.69. If the total density parameter today falls within the limits
|1−Ω0| ≤ 0.005, then at the time of radiation–matter equality, arm ≈ 2.9×10−4,
the density parameter Ωrm was equal to one with an accuracy

(10.9)

If we extrapolate backward to the time of Big Bang nucleosynthesis, at anuc ≈
3.6 × 10−9, the deviation of the density parameter Ωnuc from one was only



(10.10)

At the time that deuterium was forming, the density of the universe was equal
to the critical density to an accuracy of better than one part in a quadrillion.
Let’s push our extrapolation as far back as we dare, to the Planck time at tP ∼
5 × 10−44 s, when the scale factor was 

 At the Planck time, we find
that the density parameter ΩP was extraordinarily close to one:

(10.11)

The number 2 × 10−62 is, of course, quite tiny. To use an analogy, in order to
change the Sun’s mass by two parts in 1062, you would have to add or
subtract a twentieth of an electron. Our very existence depends on the
fanatically close balance between the actual density and the critical density in
the early universe. If, for instance, the deviation of Ω from one at the time of
nucleosynthesis had been a part per million instead of a part per quadrillion,
the universe would have collapsed in a Big Crunch or expanded to a low-
density Big Chill after only a few decades. In that case, galaxies, stars,
planets, and cosmologists would not have had time to form.

You might try to dismiss the extreme flatness of the early universe as a
coincidence, by saying, “ΩP might have had any value, but it just happened to
be 1 ± 2 × 10−62.” However, a coincidence at this level is extremely far-
fetched. It would be far more satisfactory if we could find a physical
mechanism for flattening the universe early in its history, instead of relying
on extremely contrived initial conditions at the Planck time.

10.2 The Horizon Problem
The “flatness problem,” the remarkable closeness of Ω to one in the early
universe, is puzzling. It is accompanied, however, by the “horizon problem,”
which is, if anything, even more puzzling. The horizon problem is simply the
statement that the universe is nearly homogeneous and isotropic on very large



scales. Why should we regard this as a problem? So far, we’ve treated the
homogeneity and isotropy of the universe as a blessing rather than a curse.
It’s the homogeneity and isotropy of the universe, after all, that permit us to
describe its curvature by the relatively simple Robertson–Walker metric, and
its expansion by the relatively simple Friedmann equation. If the universe
were inhomogeneous and anisotropic on large scales, it would be much more
difficult to describe mathematically.

The universe, however, is under no obligation to make things simple for
cosmologists. To see why the large-scale homogeneity and isotropy of the
universe is so unexpected in the standard Hot Big Bang scenario, consider
two antipodal points on the last scattering surface, as illustrated in Figure
10.1. The current proper distance to the last scattering surface is

(10.12)

Figure 10.1 In the standard Hot Big Bang scenario, the current proper distance to the last
scattering surface is 98 percent of the current horizon distance.

Since the last scattering of the CMB photons occurred a long time ago (tls ≪
t0), the current proper distance to the last scattering surface is only slightly
smaller than the current horizon distance. For the Benchmark Model, the
current proper distance to the last scattering surface is dp(t0) = 0.98dhor(t0).



Thus, two antipodal points on the last scattering surface, separated by 180◦ as
seen by an observer on Earth, are currently separated by a proper distance of
1.96dhor(t0). Since the two points are farther apart than the horizon distance,
they are causally disconnected. That is, they haven’t had time to send
messages to each other, and in particular, haven’t had time to come into
thermal equilibrium with each other. Nevertheless, the two points have the
same temperature (once the dipole distortion is subtracted) to within one part
in 105. Why? How can two points that haven’t had time to swap information
be so nearly identical in their properties?

The near-isotropy of the cosmic microwave background is still more
remarkable when we recall that the temperature fluctuations in the CMB
result from the density and velocity fluctuations that existed at the time of last
scattering. In the standard Hot Big Bang scenario, the horizon distance at the
time of last scattering was, from Equation 8.56, dhor(tls) = 0.251Mpc. Thus,
points more than 0.251 megaparsecs apart at the time of last scattering were
not in causal contact in the standard Hot Big Bang scenario. The angular-
diameter distance to the last scattering surface is dA ≈ 12.8 Mpc, as computed
in Section 8.4. Thus, points on the last scattering surface that were separated
by a horizon distance will have an angular separation equal to

(10.13)

as seen from the Earth today. However, as Figure 8.6 shows, points on the
last scattering surface separated by distances θ > 1.1◦, corresponding to l <
160, have temperatures that are the same to within 30 μK, just one part in 105

of the mean temperature, T0 = 2.7255 K.
Why should regions that were out of causal contact with each other at tls

have been so nearly homogeneous in their properties? Invoking coincidence
(“The different patches just happened to have the same temperature”)
requires a great stretch of the imagination. The surface of last scattering can
be divided into some 40 000 patches, each 1.1◦ across. In the standard Hot
Big Bang scenario, the center of each of these patches was out of touch with
the other patches at the time of last scattering. Now, if you invite two people
to a potluck dinner, and they both bring potato salad, you can dismiss that as



coincidence, even if they had 105 different dishes to choose from. However,
if you invite 40 000 people to a potluck dinner, and they all bring potato
salad, it starts to dawn on you that they must have been in contact with each
other: “Psst ... let’s all bring potato salad. Pass it on.” Similarly, it starts to
dawn on you that the different patches of the last scattering surface, in order
to be so nearly equal in temperature, must have been in contact with each
other: “Psst ... let’s all be at T = 2.7255 K when the universe is 13.7 gigayears
old. Pass it on.”

10.3 The Monopole Problem
The monopole problem – that is, the apparent lack of magnetic monopoles in
the universe – is not a purely cosmological problem, but one that results from
combining the Hot Big Bang scenario with the particle physics concept of a
Grand Unified Theory. In particle physics, a Grand Unified Theory, or GUT,
is a field theory that attempts to unify the electromagnetic force, the weak
nuclear force, and the strong nuclear force. Unification of forces has been a
goal of scientists since the 1870s, when James Clerk Maxwell demonstrated
that electricity and magnetism are both manifestations of a single underlying
electromagnetic field. Currently, it is customary to speak of the four
fundamental forces of nature: gravitational, electromagnetic, weak, and
strong. In the view of many physicists, though, four forces are three too
many; they’ve spent much time and effort to show that two or more of the
“fundamental forces” are actually different aspects of a single underlying
force. About a century after Maxwell, Steven Weinberg, Abdus Salam, and
Sheldon Glashow successfully devised an electroweak theory. They
demonstrated that at particle energies greater than Eew ∼ 1 TeV, the
electromagnetic force and the weak force unite to form a single
“electroweak” force. The electroweak energy of Eew ∼ 1 TeV corresponds to
a temperature Tew ∼ Eew/k ∼ 1016 K; the universe had this temperature when
its age was tew ∼ 10−12 s. Thus, when the universe was less than a picosecond
old, there were only three fundamental forces: the gravitational, strong, and
electroweak force. When the predictions of the electroweak energy were
confirmed experimentally, Weinberg, Salam, and Glashow toted home their
Nobel Prizes, and physicists braced themselves for the next step: unifying the



electroweak force with the strong force.
By extrapolating the known properties of the strong and electroweak

forces to higher particle energies, physicists estimate that at an energy EGUT ∼
1012 TeV, the strong and electroweak forces should be unified as a single
Grand Unified Force. The GUT energy EGUT ∼ 1012 TeV corresponds to a
temperature TGUT ∼ 1028 K and an age for the universe of tGUT ∼ 10−36 s. The
GUT energy is about four orders of magnitude smaller than the Planck
energy, EP ∼ 1016 TeV. Physicists are searching for a Theory of Everything
(TOE) that describes how the Grand Unified Force and the force of gravity
ultimately unite to form a single unified force at the Planck scale. The
different unification energy scales, and the corresponding temperatures and
times in the early universe, are shown in Figure 10.2.

Figure 10.2 The energy, temperature, and time scales at which the different force
unifications occur.

One of the predictions of Grand Unified Theories is that the universe
underwent a phase transition as the temperature dropped below the GUT
temperature. Generally speaking, phase transitions are associated with a
spontaneous loss of symmetry as the temperature of a system is lowered.
Take, as an example, the phase transition known as “freezing water.” At
temperatures T > 273 K, water is liquid. Individual water molecules are
randomly oriented, and the liquid water thus has rotational symmetry about
any point; in other words, it is isotropic. However, when the temperature
drops below T = 273 K, the water undergoes a phase transition, from liquid to
solid, and the rotational symmetry of the water is lost. The water molecules



are locked into a crystalline structure, and the ice no longer has rotational
symmetry about an arbitrary point. In other words, the ice crystal is
anisotropic, with preferred directions corresponding to the crystal’s axes of
symmetry.1 In a broadly similar vein, there is a loss of symmetry when the
universe undergoes the GUT phase transition at tGUT ∼ 10−36 s. At T > TGUT,
there was a symmetry between the strong and electroweak forces. At T <
TGUT, the symmetry is spontaneously lost; the strong and electroweak forces
begin to behave quite differently from each other.

In general, phase transitions associated with a loss of symmetry give rise
to flaws known as topological defects. To see how topological defects form,
consider a large tub of water cooled below T = 273 K. Usually, the freezing
of the water will start at two or more widely separated nucleation sites. The
crystal that forms about any given nucleation site is very regular, with well-
defined axes of symmetry. However, the axes of symmetry of two adjacent
ice crystals will be misaligned. At the boundary of two adjacent crystals,
there will be a two-dimensional topological defect, called a domain wall,
where the axes of symmetry fail to line up. Other types of phase transitions
give rise to one-dimensional, or line-like, topological defects (in a
cosmological context, these linear defects are known as cosmic strings). Still
other types of phase transitions give rise to zero-dimensional, or point-like,
topological defects. Grand Unified Theories predict that the GUT phase
transition creates point-like topological defects that act as magnetic
monopoles. That is, they act as the isolated north pole or south pole of a
magnet. The rest energy of the magnetic monopoles created in the GUT
phase transition is predicted to be mMc2 ∼ EGUT ∼ 1012 TeV. This corresponds
to a mass of over a nanogram (comparable to that of a bacterium), which is a
lot of mass for a single particle to be carrying around. At the time of the GUT
phase transition, points further apart than the horizon size will be out of
causal contact with each other. Thus, we expect roughly one topological
defect per horizon volume, due to the mismatch of fields that are not causally
linked. The number density of magnetic monopoles, at the time of their
creation, would be

(10.14)



and their energy density would be

(10.15)

This is a large energy density, but it is smaller by ten orders of magnitude
than the energy density of radiation at the time of the GUT phase transition:

(10.16)

Thus, the magnetic monopoles wouldn’t have kept the universe from being
radiation-dominated at the time of the GUT phase transition. However, the
magnetic monopoles, being so massive, would soon have become highly non-
relativistic, with energy density εM ∝ a−3. The energy density in radiation,
though, was falling off at the rate εγ ∝ a−4. Thus, the magnetic monopoles
would have dominated the energy density of the universe when the scale
factor had grown by a factor ∼ 1010; that is, when the temperature had fallen
to T ∼ 10−10TGUT ∼ 1018 K, and the age of the universe was only t ∼ 10−16 s. It
is obvious from observations, however, that the universe is not dominated by
magnetic monopoles today. In fact, there is no strong evidence that they exist
at all; monopole searches have placed an upper limit on the number density
of monopoles, with nM,0 < 10−29nbary,0. Even with a hefty monopole mass
mMc2 ∼ 1012 TeV ∼ 1015mpc2, this implies that the density parameter in
monopoles today is ΩM,0 < 5 × 10−16, a far cry indeed from monopole
domination.

The monopole problem can be rephrased as the question, “Where have all
the magnetic monopoles gone?” Now, you can always answer the question by
saying, “There were never any monopoles to begin with.” There is not yet a
single, definitive Grand Unified Theory, and in some variants on the GUT
theme, magnetic monopoles are not produced. However, the flatness and
horizon problems are not so readily dismissed. When the physicist Alan Guth
first proposed the idea of inflation in 1981, he introduced it as a way of
resolving the flatness problem, the horizon problem, and the monopole
problem with a single cosmological mechanism.



10.4 The Inflation Solution
What is inflation? In a cosmological context, inflation can most generally be
defined as the hypothesis that there was a period, early in the history of our
universe, when the expansion was accelerating outward; that is, an epoch
when  The acceleration equation,

(10.17)

tells us that  when P < −ε/3. Thus, inflation would have taken place if
the universe were temporarily dominated by a component with equation-of-
state parameter w < −1/3. The simplest implementation of inflation states that
the universe was temporarily dominated by a positive cosmological constant
Λi (with w = −1), and thus had an acceleration equation that could be written
in the form

(10.18)

In an inflationary phase when the energy density was dominated by a
cosmological constant, the Friedmann equation was

(10.19)

The Hubble constant Hi during the inflationary phase was thus constant, with
the value Hi = (Λi/3)1/2, and the scale factor grew exponentially with time:

(10.20)

To see how a period of exponential growth can resolve the flatness, horizon,
and monopole problems, suppose that the universe had a period of



exponential expansion sometime in the midst of its early, radiation-
dominated phase. For simplicity, suppose the exponential growth was
switched on instantaneously at a time ti, and lasted until some later time tf,
when the exponential growth was switched off instantaneously, and the
universe reverted to its former state of radiation-dominated expansion. In this
simple case, we can write the scale factor as

(10.21)

Thus, between the time ti, when the exponential inflation began, and the time
tf, when the inflation stopped, the scale factor increased by a factor

(10.22)

where N, the number of e-foldings of inflation, was

(10.23)

If the duration of inflation, tf − ti, was long compared to the Hubble time
during inflation,  then N was large, and the growth in scale factor during
inflation was enormous.

For concreteness, let’s take one possible model for inflation. This model
states that exponential inflation started around the GUT time, ti ≈ tGUT ≈
10−36 s, with a Hubble parameter  and lasted for N e-
foldings, ending at tf ≈ (N + 1)tGUT. Note that the cosmological constant Λi
present at the time of inflation in this model was very large compared to the
cosmological constant that is present today. Currently, the evidence is
consistent with an energy density in Λ of εΛ,0 ≈ 0.69εc,0 ≈ 0.0034 TeVm−3.
To produce exponential expansion with a Hubble parameter Hi ≈ 1036 s−1, the
cosmological constant during inflation would have had an energy density (see



Equation 4.69)

(10.24)

over 107 orders of magnitude larger.
How does inflation resolve the flatness problem? Equation 10.1, which

gives Ω as a function of time, can be written in the form

(10.25)

for any universe not perfectly flat. During the exponential expansion of the
inflationary epoch, H(t) = Hi = const and a(t) ∝ exp(Hit), leading to

(10.26)

The difference between Ω and one plummets exponentially with time. If we
compare the density parameter at the beginning of exponential inflation (t =
ti) with the density parameter at the end of inflation (t = tf = [N + 1]ti), we
find

(10.27)

Suppose that prior to inflation, the universe was actually strongly curved,
with

(10.28)

After N e-foldings of inflation, the deviation of Ω from one would be

(10.29)



During the subsequent radiation-dominated and matter-dominated eras, the
difference of Ω from one would increase again. However, starting from the
fact that |1 −Ω0| ≤ 0.005 today, we can use Equation 10.6 to extrapolate back
to the time tf = (N + 1)ti ≈ (N + 1) · 10−36 s, when the scale factor was

(10.30)

At this time, immediately after the end of inflation, the deviation of Ω from
one had the value

(10.31)

Equation 10.29 tells us the amount of flattening produced by exponential
inflation; Equation 10.31 tells us the amount of flattening required by
observations of the universe today. Comparing the two equations, we find
that the minimum number of e-foldings of inflation needed to match the
observations is N ≈ 60. The minimum required increase in the scale factor
during inflation is thus a(tf)/a(ti) ∼ e60 ∼ 1026. (Keep in mind, however, that N
may have been much greater than 60, since the observational data are
consistent with |1 − Ω0| ≪1.)

How does inflation resolve the horizon problem? At any time t, the
horizon distance dhor(t) is given by the relation

(10.32)

Prior to the inflationary period, the universe was radiation-dominated. Thus,
the horizon distance at the beginning of inflation was

(10.33)

The horizon size at the end of inflation was



(10.34)

If N, the number of e-foldings of inflation, is large, then the horizon size at
the end of inflation was

(10.35)

An epoch of exponential inflation causes the horizon size to grow
exponentially. If inflation started at ti ≈ 10−36 s, then the horizon size
immediately before inflation was

(10.36)

For concreteness, let’s assume N = 65 e-foldings of inflation, just a bit more
than the minimum of 60 e-foldings required to explain the flatness of today’s
universe. In this fairly minimal model, if we take  the horizon size
immediately after inflation was

(10.37)

During the brief period of ∼ 10−34 s that inflation lasts in this model, the
horizon size is boosted exponentially from submicroscopic scales to
something the size of a whale.

The exponential increase in the horizon size during inflation is illustrated
by the solid line in Figure 10.3. In the post-inflation era, when the universe
reverts to being radiation-dominated, the horizon size grows at the rate dhor
∝ a ∝ t1/2, as points that were separated by a distance dhor(tf) at the end of
inflation continue to be carried apart from each other by the expansion of the
universe. In the model we’ve adopted, where inflation started around the
GUT time and lasted for N = 65 e-foldings, the scale factor was a(tf) ∼ 2 ×
10−27 at the end of inflation, estimated from Equation 10.30. At the time of



last scattering, the scale factor was a(tls) ≈ 1/1090 ≈ 9.1 × 10−4. Thus, in our
model, the horizon distance grew from dhor(tf) ∼ 15 m at the end of inflation
to dhor(tls) ∼ 200 Mpc at the time of last scattering. This is 800 times bigger
than the horizon size dhor(tls) ≈ 0.25 Mpc that we calculated in the absence of
inflation, and is large enough that antipodal points on the last scattering
surface are causally connected.

Figure 10.3 The solid line shows the growth of the horizon distance in a universe where
exponential inflation begins at t = 10−36 s and lasts for N = 65 e-foldings. The dashed line,
for comparison, shows the horizon distance in a radiation-dominated universe without an
inflationary epoch.

To look at the resolution of the horizon problem from a slightly different
viewpoint, consider the entire universe directly visible to us today; that is, the
region bounded by the surface of last scattering. Currently, the proper
distance to the surface of last scattering is dp(t0) ≈ 14 000Mpc. In our model,
where inflation started at the GUT time and ended after N = 65 e-foldings, the
scale factor at the end of inflation was a(tf) ∼ 2×10−27. This implies that
immediately after inflation, the portion of the universe currently visible to us



was crammed into a sphere of physical radius

(10.38)

Just after inflation, in this model, all the mass-energy destined to become the
hundreds of billions of galaxies we see today was enclosed within a sphere
six feet across.2

If your mind has not yet been blown by the idea of packing the visible
universe into a sphere of radius ∼ 0.9 m, then hang on to your skull. If there
were N = 65 e-foldings of inflation, then immediately before the inflationary
epoch, the currently visible universe was enclosed within a sphere of proper
radius

(10.39)

Note that this distance is smaller than the horizon size immediately prior to
inflation: dhor(ti) ∼ 2cti ∼ 6 × 10−28 m. Thus, the portion of the universe we
can see today, even given the minimum number of e-foldings, had time to
exchange information and achieve uniformity before inflation began.3

How does inflation resolve the monopole problem? If magnetic
monopoles were created before or during inflation, then the number density
of monopoles was diluted to an undetectably low level. During a period when
the universe was expanding exponentially (a ∝ eHit), the number density of
monopoles, if they were neither created nor destroyed, was decreasing
exponentially (nM ∝ e−3Hit). For instance, if inflation started around the GUT
time, when the number density of magnetic monopoles was nM(tGUT) ≈ 1082

m−3, then after 65 e-foldings of inflation, the number density would have
been nM(tf) = e−195nM(tGUT) ≈ 0.002 m−3. The number density today, after the
additional expansion from a(tf) ∼ 2 × 10−27 to a0 = 1, would then be nM(t0) ≈
2 × 10−83 m−3 ≈ 5 × 10−16 Mpc−3. With this tiny density, there probably
would not be any monopoles at all within the last scattering surface.



10.5 The Physics of Inflation
Inflation explains some otherwise puzzling aspects of our universe, by
flattening it, ensuring its homogeneity over large scales, and driving down the
number density of magnetic monopoles it contains. However, we have not yet
answered many crucial questions about the inflationary epoch. What triggers
inflation at t = ti, and (just as important) what turns it off at t = tf ? If inflation
reduces the number density of monopoles to undetectably low levels, why
doesn’t it reduce the number density of photons to undetectably low levels? If
inflation is so efficient at flattening the global curvature of the universe, why
doesn’t it also flatten out the local curvature due to fluctuations in the energy
density? We know that the universe wasn’t perfectly homogeneous after
inflation, because the cosmic microwave background isn’t perfectly isotropic.

To answer these questions, we will have to examine, at least in broad
outline, the physics behind inflation. At present, there is not a consensus
among cosmologists about the exact mechanism driving inflation. We will
restrict ourselves to speaking in general terms about one plausible mechanism
for bringing about an inflationary epoch.

Suppose the universe contains a scalar field  whose value can vary
as a function of position and time. Some early implementations of inflation
associated the scalar field ϕ with the Higgs field, which mediates interactions
between particles at energies higher than the GUT energy; however, to keep
the discussion general, let’s just call the field  the inflaton field.4
Generally speaking, a scalar field can have an associated potential energy
V(ϕ). (As a simple illustrative example, suppose that the scalar field ϕ is the
elevation above sea level at a given point on the Earth’s surface. The
associated potential energy, in this case, is the gravitational potential V = gϕ,
where g = 9.8 ms−2.)

If ϕ has units of energy, and its potential V has units of energy density,
then the energy density of the inflaton field is

(10.40)

in a region of space where ϕ is homogeneous. The pressure of the inflaton
field is



(10.41)

If the inflaton field changes only very slowly as a function of time, with

(10.42)

then the inflaton field acts like a cosmological constant, with

(10.43)

Thus, an inflaton field can drive exponential inflation if there is a temporary
period when its rate of change  is small (satisfying Equation 10.42), and its
potential V(ϕ) is large enough to dominate the energy density of the universe.

Under what circumstances are the conditions for inflation (small  and
large V) met in the early universe? To determine the value of  start with the
fluid equation for the energy density of the inflaton field,

(10.44)

where  Substituting from Equations 10.40 and 10.41, we find the
equation that governs the rate of change of ϕ:

(10.45)

Note that Equation 10.45 mimics the equation of motion for a particle being
accelerated by a force proportional to −dV/dϕ and being impeded by a
frictional force proportional to the particle’s speed. Thus, the expansion of
the universe provides a “Hubble friction” term,  which slows the
transition of the inflaton field to a value that will minimize the potential V.
Just as a skydiver reaches terminal velocity when the downward force of
gravity is balanced by the upward force of air resistance, so the inflaton field



can reach “terminal velocity” (with  when

(10.46)

or

(10.47)

If the inflaton field has reached this terminal velocity, then the requirement
that  necessary if the inflaton field is to play the role of a
cosmological constant, translates into

(10.48)

If the universe is undergoing exponential inflation driven by the potential
energy of the inflaton field, this means that the Hubble parameter is

(10.49)

and Equation 10.48 becomes

(10.50)

which can also be written as

(10.51)



where EP is the Planck energy. If the slope of the inflaton’s potential is
sufficiently shallow, satisfying Equation 10.51, and if the amplitude of the
potential is sufficiently large to dominate the energy density of the universe,
then the inflaton field is capable of giving rise to exponential expansion.

As a concrete example of a potential V(ϕ) which can give rise to inflation,
consider the potential shown in Figure 10.4. The global minimum in the
potential occurs when the value of the inflaton field is ϕ = ϕ0. Suppose,
however, that the inflaton field starts at ϕ ≈ 0, where the potential is V(ϕ) ≈
V0. If

(10.52)

on the “plateau” where V ≈ V0, then while ϕ is slowly rolling toward ϕ0, the
inflaton field contributes an energy density εϕ ≈ V0 ≈ constant to the universe.

Figure 10.4 A potential that can give rise to an inflationary epoch. The global minimum in



V (or “true vacuum”) is at ϕ = ϕ0. If the scalar field starts at ϕ = 0, it is in a “false vacuum”
state.

When an inflaton field has a potential similar to that of Figure 10.4, it is
referred to as being in a metastable false vacuum state when it is near the
maximum at ϕ = 0. Such a state is not truly stable; if the inflaton field is
nudged from ϕ = 0 to ϕ = +dϕ, it will continue to slowly roll toward the true
vacuum state at ϕ = ϕ0 and V = 0. However, if the plateau is sufficiently broad
as well as sufficiently shallow in slope, it can take many Hubble times for the
inflaton field to roll down to the true vacuum state. Whether the inflaton field
is dynamically significant during its transition from the false vacuum to the
true vacuum depends on the value of V0. As long as εϕ ≈ V0 is tiny compared
to the energy density of radiation, εr ∼ αT4, the contribution of the inflaton
field to the Friedmann equation can be ignored. Exponential inflation, driven
by the energy density of the inflaton field, will begin at a temperature

(10.53)

or

(10.54)

This corresponds to a time

(10.55)

While the inflaton field is slowly rolling toward the true vacuum state, it
produces exponential expansion, with a Hubble parameter



(10.56)

The exponential expansion ends as the inflaton field reaches the true vacuum
at ϕ = ϕ0. The duration of inflation thus depends on the exact shape of the
potential V(ϕ). The number of e-foldings of inflation, for the potential shown
in Figure 10.4, should be

(10.57)

Large values of ϕ0 and V0 (that is, a broad, high plateau) and small values of
dV/dϕ (that is, a shallowly sloped plateau) lead to more e-foldings of
inflation.

After rolling off the plateau in Figure 10.4, the inflaton field ϕ oscillates
about the minimum at ϕ0. The amplitude of these oscillations is damped by
the “Hubble friction” term proportional to  in Equation 10.45. If the
inflaton field is coupled to any of the other fields in the universe, however,
the oscillations in ϕ are damped more rapidly, with the energy of the inflaton
field being carried away by photons or other relativistic particles. These
photons reheat the universe after the precipitous drop in temperature caused
by inflation. The energy lost by the inflaton field after its phase transition
from the false vacuum to the true vacuum can be thought of as the latent heat
of that transition. When water freezes, to use a low-energy analogy, it loses
an energy of 3 × 108 J m−3 ∼ 2 × 1015 TeVm−3, which goes to heat its
surroundings.5 Similarly, the transition from false to true vacuum releases an
energy V0, which goes to reheat the universe.

If the scale factor increases by a factor

(10.58)

during inflation, then the temperature will drop by a factor e−N. If inflation
starts around the GUT time, and lasts for N = 65 e-foldings, then the



temperature drops from a toasty T(ti) ∼ TGUT ∼ 1028 K to a chilly T(tf) ∼ e
−65TGUT ∼ 0.6 K. Not only is inflation very effective at driving down the
number density of magnetic monopoles, it is also effective at driving down
the number density of every other type of particle, including photons. The
chilly post-inflationary period didn’t last, though. As the energy density
associated with the inflaton field was converted to relativistic particles such
as photons, the temperature of the universe was restored to its pre-
inflationary value Ti.

Inflation successfully explains the flatness, homogeneity, and isotropy of
the universe. It ensures that we live in a universe with a negligibly low
density of magnetic monopoles, while the inclusion of reheating ensures that
we don’t live in a universe with a negligibly low density of photons. In some
ways, though, inflation seems to be too successful. It makes the universe
homogeneous and isotropic all right, but it makes it too homogeneous and
isotropic. Exponential inflation not only flattens the global curvature of the
universe, it also flattens the local curvature due to fluctuations in the energy
density. If energy fluctuations prior to inflation were δε/ε ∼ 1, a naïve
calculation predicts that density fluctuations immediately after 65 e-foldings
of inflation would be

(10.59)

This is a very close approach to homogeneity. Even allowing for the growth
in amplitude of density fluctuations prior to the time of last scattering, this
would leave the cosmic microwave background much smoother than is
actually observed.

Remember, however, the saga of how a submicroscopic patch of the
universe (d ∼ 4×10−29 m) was inflated to macroscopic size (d ∼ 0.9 m), before
growing to the size of the currently visible universe. Inflation excels in taking
submicroscopic scales and blowing them up to macroscopic scales. On
submicroscopic scales, the vacuum, whether true or false, is full of constantly
changing quantum fluctuations, with virtual particles popping into and out of
existence. On quantum scales, the universe is intrinsically inhomogeneous.
Inflation takes the submicroscopic quantum fluctuations in the inflaton field
and expands them to macroscopic scales. The energy fluctuations that result



are the origin, in the inflationary scenario, of the inhomogeneities in the
current universe. We can replace the old proverb, “Great oaks from tiny
acorns grow,” with the yet more amazing proverb, “Great superclusters from
tiny quantum fluctuations grow.”

Exercises
10.1 What upper limit is placed on Ω(tP) by the requirement that the

universe not end in a Big Crunch between the Planck time, tP ≈
5×10−44 s, and the start of the inflationary epoch at ti? Compute the
maximum permissible value of Ω(tP), first assuming ti ≈ 10−36 s, then
assuming ti ≈ 10−26 s. (Hint: prior to inflation, the Friedmann equation
will be dominated by the radiation term and the curvature term.)

10.2 Current observational limits on the density of magnetic monopoles tell
us that their density parameter is currently ΩM,0 < 10−6. If monopoles
formed at the GUT time, with one monopole per horizon of mass mM =
mGUT, how many e-foldings of inflation would be required to drive the
current density of monopoles below the bound ΩM,0 < 10−6? Assume
that inflation took place immediately after the formation of monopoles.

10.3 It has been speculated that the present-day acceleration of the universe
is due to the existence of a false vacuum, which will eventually decay.
Suppose that the energy density of the false vacuum is εΛ = 0.69εc,0 =
3360 MeVm−3, and that the current energy density of matter is εm,0 =
0.31εc,0 = 1510MeVm−3. What will be the value of the Hubble
parameter once the false vacuum becomes strongly dominant? Suppose
that the false vacuum is fated to decay instantaneously to radiation at a
time tf = 50t0. (Assume, for simplicity, that the radiation takes the form
of blackbody photons.) To what temperature will the universe be
reheated at t = tf ? What will the energy density of matter be at t = tf ?
At what time will the universe again be dominated by matter?

1 Suppose, for instance, that the water freezes in the familiar six-pointed form of a
snowflake. It is now only symmetric with respect to rotations of 60◦ (or integral



multiples of that angle) about the snowflake’s center.
2 If just after inflation the horizon distance was the size of a whale, then the currently

visible universe was the size of Jonah.
3 Because of the boost given to the horizon distance by an exponential period of inflation,

the “horizon distances” that we computed in previous chapters must be slightly
redefined as “post-inflationary horizon distances.” That is, instead of being the distance
traveled by light since the Big Bang at t = 0, they are the distance traveled by light since
the end of inflation at t = tf ∼ 10−34 s.

4 This is not a typo: the inflaton field drives inflation.
5 This is why orange growers spray their trees with water when a hard freeze threatens.

The energy released by water as it freezes keeps the delicate leaves warm. (The thin
layer of ice also cuts down on convective and radiative heat loss, but the release of latent
heat is the largest effect.)



11

Structure Formation: Gravitational
Instability

The universe can be approximated as being homogeneous and isotropic only
if we smooth it with a filter ∼ 100 Mpc across. On smaller scales, the universe
contains density fluctuations ranging from subatomic quantum fluctuations
up to the large superclusters and voids, ∼ 50 Mpc across, which characterize
the distribution of galaxies in space. If we relax the strict assumption of
homogeneity and isotropy that underlies the Robertson–Walker metric and
the Friedmann equation, we can ask (and, to some extent, answer) the
question, “How do density fluctuations in the universe evolve with time?”

The formation of relatively small objects, such as planets, stars, or even
galaxies, involves fairly complicated physics. Because of the greater
complexity when baryons are involved in structure formation, we will
postpone the discussion of galaxies and stars until the next chapter. In this
chapter, we will focus on the formation of structures larger than galaxies –
clusters, superclusters, and voids. Cosmologists use the term large scale
structure of the universe to refer to all structures bigger than individual
galaxies. A map of the large scale structure of the universe, as traced by the
positions of galaxies, can be made by measuring the redshifts of a sample of
galaxies and using the Hubble relation, d = (c/H0)z, to estimate their
distances. For instance, Figure 11.1 shows two slices through the universe
based on data from the 2dF Galaxy Redshift Survey (2dFGRS). From our
location near the midplane of our galaxy’s dusty disk, we get our best view of
distant galaxies when we look perpendicular to the disk, toward what are
conventionally called the “north galactic pole” (in the constellation Coma
Berenices) and the antipodal “south galactic pole” (in the constellation
Sculptor). The 2dFGRS selected two long narrow stripes on the sky, one near
the north galactic pole and the other near the south galactic pole. In each
stripe, the redshift was measured for ∼ 100 000 galaxies. By plotting the
redshift of each galaxy as a function of its angular position along the stripe, a



pair of two-dimensional slices through the universe were mapped out.

Figure 11.1 Two slices through the universe, based on the redshift distribution of ∼ 200
000 galaxies measured by the 2dF Galaxy Redshift Survey; white regions are higher in
density, black regions are lower. Left slice: data from the north stripe. Right slice: data
from the south stripe. [van de Weygaert & Schaap 2009, Lect. Notes Phys., 665, 291]

Figure 11.1 shows the two slices that the 2dF Galaxy Redshift Survey
made through the universe. They reach as far as a redshift z ≈ 0.22,
corresponding to a proper distance dp(t0) ∼ 1000 Mpc. The white regions in
the plot represent regions with a high number density of galaxies. The
galaxies obviously do not have a random Poisson distribution, in which the
position of each galaxy is uncorrelated with the position of other galaxies.
Instead, the galaxies are found primarily in long superclusters separated by
lower density voids. Superclusters are objects that are just now collapsing
under their own self-gravity. Superclusters are typically flattened (roughly
planar) or elongated (roughly linear) structures. A supercluster will contain
one or more clusters embedded within it; a cluster is a fully collapsed object
that has come to equilibrium, more or less, and hence obeys the virial
theorem, as discussed in Section 7.3. In comparison to the flattened or
elongated superclusters, the underdense voids are roughly spherical in shape.



When gazing at the large scale structure of the universe, as traced by the
distribution of galaxies, cosmologists are likely to call it “bubbly” or
“spongy,” with the low-density voids constituting the bubbles, or the holes of
the sponge. Alternatively, if they focus on the high-density superclusters
rather than the low-density voids, cosmologists refer to a “cosmic web” of
filaments and walls.

11.1 The Matthew Effect
Being able to describe the distribution of galaxies in space doesn’t
automatically lead to an understanding of the origin of large scale structure.
Consider, as an analogy, the distribution of luminous objects shown in Figure
11.2. The distribution of illuminated cities on the Earth’s surface is obviously
not random. There are “superclusters” of cities, such as the Boswash
supercluster stretching from Boston to Washington. There are “voids” such as
the Appalachian void. However, the influences that determine the exact
location of cities are often far removed from fundamental physics.1

Figure 11.2 The northeastern United States and southeastern Canada at night, as seen by
the Suomi-NPP satellite. [NASA Worldview]

Fortunately, the distribution of galaxies in space is more closely tied to
fundamental physics than is the distribution of cities on the Earth. The basic
mechanism for growing large structures, such as voids and superclusters, is
gravitational instability. Suppose that at some time in the past, the density of



the universe had slight inhomogeneities. We know, for instance, that such
density fluctuations existed at the time of last scattering, since they left their
stamp on the cosmic microwave background. When the universe is matter-
dominated, the overdense regions expand less rapidly than the universe as a
whole; if their density is sufficiently great, they will collapse and become
gravitationally bound objects such as clusters. The dense clusters will, in
addition, draw matter to themselves from the surrounding underdense
regions. The effect of gravity on density fluctuations is sometimes referred to
as the Matthew effect: “For whosoever hath, to him shall be given, and he
shall have more abundance; but whosoever hath not, from him shall be taken
away even that he hath” [Matthew 13:12]. In less biblical language, the rich
get richer and the poor get poorer.2

To put our study of gravitational instability on a more quantitative basis,
consider some component of the universe whose energy density  is a
function of position as well as time. At a given time t, the spatially averaged
energy density is

(11.1)

To ensure that we have found the true average, the volume V over which we
are averaging must be large compared to the size of the biggest structure in
the universe. It is useful to define a dimensionless density fluctuation

(11.2)

The value of δ is thus negative in underdense regions and positive in
overdense regions. If the density ε is constrained to be non-negative, as it is
for matter and radiation, then the minimum possible value of δ is δ = −1,
corresponding to ε = 0. There is no such upper limit on δ, which can have a
value δ ≫+1.

To get a feel for how initially small density contrasts grow with time,
consider a particularly simple case. Start with a static, homogeneous, matter-
only universe with uniform mass density ρ. (At this point, we stumble over



the inconvenient fact that there’s no such thing as a static, homogeneous,
matter-only universe. This is the awkward fact that inspired Einstein to
introduce the cosmological constant. However, there are conditions under
which we can consider some region of the universe to be approximately static
and homogeneous. For instance, the air in a closed room is approximately
static and homogeneous; it is stabilized by a pressure gradient with a scale
length much greater than the height of the ceiling.) In a region of the universe
that is approximately static and homogeneous, we add a small amount of
mass within a sphere of radius R, as seen in Figure 11.3, so that the density
within the sphere is ρ(1 + δ), with δ ≪ 1. If the density excess δ is uniform
within the sphere, then the gravitational acceleration at the sphere’s surface,
due to the excess mass, will be

(11.3)

or

(11.4)

Figure 11.3 A sphere of radius R(t) expanding or contracting under the influence of the
density fluctuation δ(t).

Thus, a mass excess (δ > 0) will cause the sphere to collapse inward 
Equation 11.4 contains two unknowns, R(t) and δ(t). If we want to find an



explicit solution for δ(t), we need a second equation involving R(t) and δ(t).
Conservation of mass tells us that the mass of the sphere,

(11.5)

remains constant during the collapse. Thus we can write another relation
between R(t) and δ(t) that must hold true during the collapse:

(11.6)

where

(11.7)

When δ ≪ 1, we may make the approximation

(11.8)

Taking the second time derivative yields

(11.9)

Thus, mass conservation tells us that

(11.10)

in the limit that δ ≪ 1. Combining Equations 11.4 and 11.10, we find a tidy
equation that tells us how the small overdensity δ evolves as the sphere



collapses:

(11.11)

The most general solution of Equation 11.11 has the form

(11.12)

where the dynamical time for collapse is

(11.13)

Note that the dynamical time depends only on ρ, and not on R. The constants
A1 and A2 in Equation 11.12 depend on the initial conditions of the sphere.
For instance, if the overdense sphere starts at rest, with  at t = 0, then A1
= A2 = δ(0)/2. After a few dynamical times, however, only the exponentially
growing term of Equation 11.12 is significant. Thus, gravity tends to make
small density fluctuations in a static, pressureless medium grow
exponentially with time.

11.2 The Jeans Length
The exponential growth of density perturbations is slightly alarming, at first
glance. For instance, the density of the air around you is ρ ≈ 1 kg m−3,
yielding a dynamical time for collapse of tdyn ∼ 10 hours.3 What keeps small
density perturbations in the air from undergoing a runaway collapse over the
course of a few days? The answer, of course, is pressure. A nonrelativistic
gas, as shown in Section 4.4, has an equation-of-state parameter

(11.14)



where T is the temperature of the gas and μ is the mean mass per gas particle.
Thus, the pressure of an ideal gas will never totally vanish, but will only
approach zero in the limit that the temperature approaches absolute zero.

When a sphere of gas is compressed by its own gravity, a pressure
gradient will build up that tends to counter the effects of gravity. In the
universe today, a star is the prime example of a sphere of gas in which the
inward force of gravity is balanced by the outward force provided by a
pressure gradient; the hot intracluster gas of the Coma cluster is also in a
balance between gravity and pressure. However, hydrostatic equilibrium, the
state in which gravity is exactly balanced by a pressure gradient, cannot
always be attained. Consider an overdense sphere with initial radius R. If
pressure were not present, it would collapse on a timescale

(11.15)

If the pressure is nonzero, the attempted collapse will be countered by a
steepening of the pressure gradient within the perturbation. The steepening of
the pressure gradient, however, doesn’t occur instantaneously. Any change in
pressure travels at the sound speed.4 Thus, the time it takes for the pressure
gradient to build up in a region of radius R will be

(11.16)

where cs is the local sound speed. In a medium with equation-of-state
parameter w > 0, the sound speed is

(11.17)

For hydrostatic equilibrium to be attained, the pressure gradient must build
up before the overdense region collapses, implying



(11.18)

Comparing Equation 11.15 with Equation 11.16, we find that for a density
perturbation to be stabilized by pressure against collapse, it must be smaller
than some reference size λJ, given by the relation

(11.19)

The length scale λJ is known as the Jeans length, after the astrophysicist
James Jeans, who was among the first to study gravitational instability in a
cosmological context. Overdense regions larger than the Jeans length
collapse under their own gravity. Overdense regions smaller than the Jeans
length merely oscillate in density; they constitute stable standing sound
waves.

A more precise derivation of the Jeans length, including all the appropriate
factors of π, yields the result

(11.20)

The Jeans length of the Earth’s atmosphere, for instance, where the sound
speed is a third of a kilometer per second and the dynamical time is ten hours,
is λJ ∼ 105 km, far longer than the scale height of the Earth’s atmosphere.
You don’t have to worry about density fluctuations in the air undergoing a
catastrophic collapse.

To consider the behavior of density fluctuations on cosmological scales,
consider a spatially flat universe in which the mean density is ε, but which
contains density fluctuations with amplitude |δ| ≪1. The characteristic time
for expansion of such a universe is the Hubble time,

(11.21)



Comparison of Equation 11.13 with Equation 11.21 reveals that the Hubble
time is comparable in magnitude to the dynamical time tdyn for the collapse of
an overdense region:

(11.22)

The Jeans length in an expanding flat universe will then be

(11.23)

If we focus on one particular component of the universe, with equation-of-
state parameter w and sound speed  the Jeans length for that
component will be

(11.24)

Consider, for instance, the “radiation” component of the universe. With w =
1/3, the sound speed in a gas of photons or other relativistic particles is 

 The Jeans length for radiation in an expanding universe is then

(11.25)

Density fluctuations in the radiative component will be pressure-supported if
they are smaller than three times the Hubble distance. Although a universe
containing nothing but radiation can have density perturbations smaller than
λJ ∼ 3c/H, they will be stable sound waves, and will not collapse under their
own gravity.

In order for a universe to have gravitationally collapsed structures much
smaller than the Hubble distance, it must have a nonrelativistic component,



with  The gravitational collapse of the baryonic component of the
universe is complicated by the fact that it was coupled to photons until the
time of decoupling at a redshift zdec ≈ zls ≈ 1090. Before this time, the
photons, electrons, and baryons were all coupled together to form a single
photon–baryon fluid. Since photons were still dominant over baryons at the
time of decoupling, with εγ > εbary, we can regard the baryons (with mild
exaggeration) as being a dynamically insignificant contaminant in the
photon–baryon fluid. Just before decoupling, the Jeans length of the photon–
baryon fluid was roughly the same as the Jeans length of a pure photon gas:

(11.26)

The baryonic Jeans mass, MJ, is defined as the mass of baryons contained
within a sphere of radius λJ :

(11.27)

Immediately before decoupling, when the baryon density was ρbary ≈ 5.6 ×
10−19 kg m−3, the baryonic Jeans mass was

(11.28)

This is very large compared to the baryonic mass of the Coma cluster (Mbary
∼ 2× 1014 M⊙); it is even large when compared to the baryonic mass of a
supercluster (Mbary ∼ 1016 M⊙).

Now consider what happens to the baryonic Jeans mass immediately after
decoupling. Once the photons are decoupled, the photons and baryons form
two separate gases, instead of a single photon–baryon fluid. The sound speed
in the photon gas is

(11.29)



The sound speed in the baryonic gas, by contrast, is

(11.30)

At the time of decoupling, the thermal energy per particle was kTdec ≈ 0.26
eV, and the mean rest energy of the atoms in the baryonic gas was mc2 =
1.22mpc2 ≈ 1140 MeV, taking into account the helium mass fraction of Yp =
0.24. Thus, the sound speed of the baryonic gas immediately after decoupling
was

(11.31)

only 5 kilometers per second. Thus, once the baryons were decoupled from
the photons, their associated Jeans length decreased by a factor

(11.32)

Decoupling causes the baryonic Jeans mass to decrease by a factor F3 ≈ 1.8 ×
10−14, plummeting from MJ(before) ≈ 1019 M⊙ to

(11.33)

This is very small compared to the baryonic mass of our own galaxy (Mbary ∼
1011 M⊙); it is even small when compared to a more modest galaxy like the
Small Magellanic Cloud (Mbary ∼ 109 M⊙).

The abrupt decrease of the baryonic Jeans mass at the time of decoupling
marks an important epoch in the history of structure formation. Perturbations
in the baryon density, from supercluster scales down to the size of the



smallest dwarf galaxies, couldn’t grow in amplitude until the time of photon
decoupling, when the universe had reached the ripe old age of tdec ≈ 0.37
Myr. After decoupling, the growth of density perturbations in the baryonic
component was off and running.

11.3 Instability in an Expanding Universe
Density perturbations smaller than the Hubble distance can grow in
amplitude only when they are no longer pressure-supported. However, if the
pressure (and hence the Jeans length) of some component becomes negligibly
small, this doesn’t necessarily imply that the amplitude of density
fluctuations is free to grow exponentially with time. The analysis of Section
11.1, which yielded δ ∝ exp(t/tdyn), assumed that the universe was static as
well as pressureless. In an expanding Friedmann universe, the timescale for
the growth of a density perturbation by self-gravity, tdyn ∼ (c2/Gε)1/2, is
comparable to the timescale for expansion, H−1 ∼ (c2/Gε)1/2. Self-gravity, in
the absence of global expansion, causes overdense regions to become more
dense with time. The global expansion of the universe, in the absence of self-
gravity, causes overdense regions to become less dense with time. Because
the timescales for these two competing processes are similar, they must both
be taken into account when computing the time evolution of a density
perturbation.

To see how small density perturbations in an expanding universe evolve
with time, let’s do a Newtonian analysis of the problem, similar in spirit to
the Newtonian derivation of the Friedmann equation given in Chapter 4.
Suppose you are in a universe containing only pressureless matter with mass
density ρ(t). As the universe expands, the density decreases at the rate ρ(t) ∝
a(t)−3. Within a spherical region of radius R, a small amount of matter is
added, or removed, so that the density within the sphere is

(11.34)

with |δ| ≪ 1. The total gravitational acceleration at the surface of the sphere
will be



(11.35)

The equation of motion for a point at the surface of the sphere can then be
written in the form

(11.36)

Mass conservation tells us that the mass inside the sphere,

(11.37)

remains constant as the sphere expands. Thus,

(11.38)

or, since ρ ∝ a−3,

(11.39)

That is, if the sphere is slightly overdense, its radius will grow slightly less
rapidly than the scale factor a(t). If the sphere is slightly underdense, it will
grow slightly more rapidly than the scale factor.

Taking two time derivatives of Equation 11.39 yields

(11.40)

when |δ| ≪1. Combining Equations 11.36 and 11.40, we find



(11.41)

When δ = 0, Equation 11.41 reduces to

(11.42)

which is the correct acceleration equation for a homogeneous, isotropic
universe containing nothing but pressureless matter (compare to Equation
4.49). By subtracting Equation 11.42 from Equation 11.41 to leave only the
terms linear in the perturbation δ, we find the equation that governs the
growth of small amplitude perturbations:

(11.43)

or

(11.44)

remembering that  In a static universe, with H = 0, Equation 11.44
reduces to the result we already found in Equation 11.11:

(11.45)

The additional term,  found in an expanding universe, is a “Hubble
friction” term; it acts to slow the growth of density perturbations in an
expanding universe.

A fully relativistic calculation for the growth of density perturbations
yields the more general result

(11.46)



This form of the equation can be applied to a universe that contains
components with non-negligible pressure, such as radiation (w = 1/3) or a
cosmological constant (w = −1). In multiple-component universes, however,
it should be remembered that δ represents the fluctuation in the density of
matter alone. That is,

(11.47)

where εm(t), the average matter density, might be only a small fraction of ε(t),
the average total density. Rewritten in terms of the density parameter for
matter,

(11.48)

Equation 11.46 takes the form

(11.49)

During epochs when the universe is not dominated by matter, density
perturbations in the matter do not grow rapidly in amplitude. Take, for
instance, the early radiation-dominated phase of the universe. During this
epoch, Ωm ≪ 1 and H = 1/(2t), meaning that Equation 11.49 takes the form

(11.50)

which has a solution of the form

(11.51)



During the radiation-dominated epoch, density fluctuations in the dark matter
grew only at a logarithmic rate. In the far future, if the universe is indeed
dominated by a cosmological constant, the density parameter for matter will
again be negligibly small, the Hubble parameter will have the constant value
H = HΛ, and Equation 11.49 will take the form

(11.52)

which has a solution of the form

(11.53)

In a lambda-dominated phase, therefore, fluctuations in the matter density
reach a constant fractional amplitude, while the average matter density
plummets at the rate 

Only when matter dominates the energy density can fluctuations in the
matter density grow at a significant rate. In a flat, matter-dominated universe,
Ωm = 1, H = 2/(3t), and Equation 11.49 takes the form

(11.54)

If we guess that the solution to the above equation has the power-law form
Dtn, plugging this guess into the equation yields

(11.55)

or

(11.56)



The two possible solutions for this quadratic equation are n = −1 and n = 2/3.
Thus, the general solution for the time evolution of density perturbations in a
spatially flat, matter-only universe is

(11.57)

The values of D1 and D2 are determined by the initial conditions for δ(t). The
decaying mode, ∝ t−1, eventually becomes negligibly small compared to the
growing mode, ∝ t2/3. When the growing mode is the only survivor, the
density perturbations in a flat, matter-only universe grow at the rate

(11.58)

as long as |δ| ≪1.
If baryonic matter were the only type of nonrelativistic matter in the

universe, then density perturbations could have started to grow at zdec = 1090,
and they could have grown in amplitude by a factor ∼ 1090 by the present
day. However, the dominant form of nonrelativistic matter is dark matter. The
density perturbations in the dark matter started to grow effectively at zrm =
3440. At the time of decoupling, the baryons fell into the preexisting
gravitational wells of the dark matter. The situation is schematically
illustrated in Figure 11.4. Having nonbaryonic dark matter allows the
universe to get a “head start” on structure formation; perturbations in the
matter density can start growing at zrm = 3440 rather than zdec = 1090, as they
would in a universe without dark matter.



Figure 11.4 A highly schematic drawing of how density fluctuations in different
components of the universe evolve with time.

11.4 The Power Spectrum
When deriving Equation 11.44, which determines the growth rate of density
perturbations in a Newtonian universe, we assumed that the perturbation was
spherically symmetric. In fact, Equation 11.44 and its relativistically correct
brother, Equation 11.46, both apply to low-amplitude perturbations of any
shape. This is fortunate, since the density perturbations in the real universe
are not spherically symmetric. The bubbly structure shown in redshift maps
of galaxies, such as Figure 11.1, has grown from the density perturbations
that were present when the universe became matter dominated. Great oaks
from tiny acorns grow – but then, great pine trees from tiny pinenuts grow.
By looking at the current large scale structure (the “tree”), we can deduce the
properties of the early, low-amplitude, density fluctuations (the “nut”).5

Let us consider the properties of the early density fluctuations at some
time ti, when they were still very low in amplitude (|δ| ≪ 1). As long as the
density fluctuations are small in amplitude, the expansion of the universe is
still nearly isotropic, and the geometry of the universe is still well described
by the Robertson–Walker metric (Equation 3.41):



(11.59)

Under these circumstances, it is useful to set up a comoving coordinate
system. Choose some point as the origin. In a universe described by the
Robertson–Walker metric, as shown in Section 3.6, the proper distance of
any point from the origin can be written in the form

(11.60)

where the comoving distance r is what the proper distance would be at the
present day (a = 1) if the expansion continued to be perfectly isotropic. If we
label each bit of matter in the universe with its comoving coordinate position 

  then  will remain very nearly constant as long as |δ| ≪ 1. Thus,
when considering the regime where density fluctuations are small,
cosmologists typically consider  the density fluctuation at a comoving
location  at some time ti. (The exact value of ti doesn’t matter, as long as it’s
a time after the density perturbations are in place, but before they reach an
amplitude |δ| ∼ 1. Switching to a different value of ti, under these restrictions,
simply changes the amplitude of  and not its shape.)

When discussing the temperature fluctuations of the cosmic microwave
background in Chapter 8, I pointed out that cosmologists weren’t interested
in the exact pattern of hot and cold spots on the last scattering surface, but
rather in the statistical properties of the field δT/T(θ, ϕ). Similarly,
cosmologists are not interested in the exact locations of the density maxima
and minima in the early universe, but rather in the statistical properties of the
field  When studying the temperature fluctuations of the CMB, it is
useful to expand δT/T(ϕ, θ) in spherical harmonics. A similar decomposition
of  is also useful. Since δ is defined in three-dimensional space rather
than on the surface of a sphere, a useful expansion of δ is in terms of Fourier
components.

Within a large box expanding along with the universe, of comoving
volume V, the density fluctuation field  can be expressed as

(11.61)



where the individual Fourier components  are found by performing the
integral

(11.62)

In performing the Fourier transform, we are breaking up the function 
into an infinite number of sine waves, each with comoving wavenumber 
and comoving wavelength λ = 2π/k. If we have complete, uncensored
knowledge of  we can compute all the Fourier components 
conversely, if we know all the Fourier components, we can reconstruct the
density field 

Each Fourier component is a complex number, which can be written in the
form

(11.63)

When  each Fourier component obeys Equation 11.49,

(11.64)

as long as the proper wavelength, a(t)2π/k, is large compared to the Jeans
length and small compared to the Hubble distance c/H. The phase  remains
constant as long as the amplitude  remains small. Even after fluctuations
with a short proper wavelength have reached  and collapsed under
their own gravity, the growth of the longer wavelength perturbations is still
described by Equation 11.64. This means, helpfully enough, that we can use
linear perturbation theory to study the growth of very large scale structures
even after smaller structures, such as galaxies and clusters of galaxies, have
already collapsed.

The mean square amplitude of the Fourier components defines the power
spectrum:



(11.65)

where the average is taken over all possible orientations of the wavenumber 
 (If  is isotropic, then no information is lost, statistically speaking, if we

average the power spectrum over all angles.) When the phases  of the
different Fourier components are uncorrelated with each other, then  is
called a Gaussian field. If a Gaussian field is homogeneous and isotropic,
then all its statistical properties are summed up in the power spectrum P(k). 

 is a Gaussian field, then the value of δ at a randomly selected point is
drawn from the Gaussian probability distribution

(11.66)

where the standard deviation σδ can be computed from the power spectrum:

(11.67)

The study of Gaussian density fields is of particular interest to cosmologists
because most inflationary scenarios predict that the density fluctuations
created by inflation (Section 10.5) constitute an isotropic, homogeneous
Gaussian field. In addition, it is expected that the power spectrum of
inflationary density fluctuations can be well described by a power law, with

(11.68)

Theoretically, the value of the power-law index favored by inflation is n ≈ 1.
A power spectrum with n = 1 exactly is often referred to as a Harrison–
Zel’dovich spectrum, after Edward Harrison and Yakov Zel’dovich, who
independently proposed it as a physically plausible spectrum for density
perturbations as early as 1970 (even before the concept of inflation entered
cosmology). Observationally, the value of the power-law index n can be



deduced from the temperature fluctuations of the cosmic microwave
background on large scales (θ > 1.1◦). The temperature correlation function
measured by the Planck satellite (Figure 8.6) is consistent with n = 0.97 ±
0.01. Thus, the observed inflationary power spectrum is only slightly “tilted”
relative to a Harrison–Zel’dovich spectrum.

What does a universe with P(k) ∝ kn look like? Imagine going through
such a universe and marking out randomly located spheres of comoving
radius r. The mean mass of each sphere (considering only the nonrelativistic
matter which it contains) will be

(11.69)

However, the actual mass of each sphere will vary; some spheres will be
slightly underdense, and others will be slightly overdense. The mean square
density fluctuation of the mass inside each sphere is a function of the power
spectrum and of the size of the sphere:

(11.70)

where j1(x) = (sin x − x cos x)/x2 is a spherical Bessel function of the first
kind.

In general, to compute the mean square mass fluctuation, you must know
the power spectrum P(k). However, if the power spectrum has the simple
form P(k) ∝ kn, we can substitute a new variable of integration, u = kr, to
find

(11.71)



Thus, the root mean square mass fluctuation within spheres of comoving
radius r will have the dependence

(11.72)

This can also be expressed in the form δM/M ∝ M−(3+n)/6. (If you scattered
point masses randomly throughout the universe, so that they formed a
Poisson distribution, you would expect mass fluctuations of amplitude δM/M
∝ N−1/2, where N is the expected number of point masses within the sphere.
Since the average mass within a sphere is M ∝ N, a Poisson distribution has
δM/M ∝ M−1/2, or n = 0. The Harrison–Zel’dovich spectrum, with n = 1, thus
will produce more power on small length scales than a Poisson distribution of
points.) Note that the potential fluctuations associated with mass fluctuations
on a length scale r will have an amplitude 

 Thus, the Harrison–Zel’dovich
spectrum, with n = 1, is the only power law that prevents the divergence of
the potential fluctuations on both large and small scales. For this reason, the
Harrison–Zel’dovich spectrum is also referred to as a scale invariant power
spectrum of density perturbations.

11.5 Hot versus Cold
Immediately after inflation, the power spectrum for density perturbations has
the form P(k) ∝ kn, with an index n ≈ 1. However, the shape of this
primordial power spectrum will be modified between the end of inflation at tf
and the time of radiation–matter equality at trm ≈ 5.0 × 104 yr. The shape of
the power spectrum at trm, when density perturbations start to grow
significantly in amplitude, depends on the properties of the dark matter. More
specifically, it depends on whether the dark matter is predominantly cold
dark matter or hot dark matter.

Saying that dark matter is “cold” or “hot” is a statement about the thermal
velocity of the dark matter particles. More specifically, it’s a statement about



the thermal velocity at a particular time in the history of the universe; the
time when the mass within a Hubble volume (that is, a sphere of proper
radius c/H) was equal to the total mass of a large galaxy like our own, Mgal ≈
1012 M⊙. In the radiation-dominated universe, the Hubble parameter was,
from Equation 5.81,

(11.73)

This means the mass within a Hubble volume during the early, radiation-
dominated era was

(11.74)

using the parameters of the Benchmark Model. The mass within a Hubble
volume was equal to Mgal ≈ 1012 M⊙ at a scale factor a ≈ 4 × 10−6,
corresponding to a temperature kT ≈ 60 eV and a cosmic time 

 Particles with a rest energy mc2 ≪ 3kT ∼ 180 eV
were highly relativistic at this time, with a particle energy E ∼ 3kT ∼ 180 eV.
Particles with a rest energy mc2 ≫ 180 eV were highly nonrelativistic at this
time, with a particle energy E almost entirely contributed by their rest energy
mc2.

Cold dark matter consists of particles that were nonrelativistic at t ≈ 12 yr,
either because they were nonrelativistic at the time they decoupled from
photons and baryonic matter, or because they have mc2 ≫ 3kT ∼ 180 eV, and
thus had cooled to nonrelativistic thermal velocities by t ≈ 12 yr. For
instance, WIMPs decoupled at t ∼ 1 s, when the universe had a mean particle
energy ∼ 3kT ∼ 3 MeV. However, WIMPs are predicted to have a mass mc2 ∼
100 GeV. With a thermal energy much smaller than their rest energy at the
time of decoupling, WIMPs were already nonrelativistic when they
decoupled, and thus qualify as cold dark matter. Axions are a type of
elementary particle first proposed by particle physicists for noncosmological
purposes. If they exist, however, they would have formed out of equilibrium



in the early universe, with very low thermal velocities. Thus, axions would
act as cold dark matter as well.

Hot dark matter, by contrast, consists of particles that were relativistic at
the time they decoupled from the other components of the universe, and that
remained relativistic until t ≫ 12 yr, when the mass inside the Hubble
volume was large compared to the mass of a galaxy. For instance, neutrinos,
like WIMPs, decoupled at t ∼ 1 s, when the mean particle energy was ∼ 3
MeV. Thus, a neutrino with mass mνc2 ≪ 3 MeV was hot enough to be
relativistic at the time it decoupled. Moreover, a neutrino with mass 5 × 10−4

eV ≪ mνc2 ≪ 180 eV was relativistic at t ≈ 12 yr, but is nonrelativistic
today, at t0 ≈ 13.7 Gyr. Thus, neutrinos in this mass range qualify as hot dark
matter.

To see how the existence of hot dark matter modifies the spectrum of
density perturbations, consider what would happen in a universe filled with
hot dark matter consisting of particles with mass mh. The initially relativistic
hot dark matter particles cool as the universe expands, until their thermal
velocities drop below c when 3kT ≈ mhc2. This happens at a temperature

(11.75)

For a particle mass mhc2 > 2.4 eV, the particles become nonrelativistic when
the universe is still radiation-dominated. In a radiation-dominated universe,
the temperature of Equation 11.75 corresponds to a cosmic time

(11.76)

Prior to the time th, the hot dark matter particles move freely in random
directions with a speed close to that of light. This motion, called free
streaming, acts to wipe out any density fluctuations present in the hot dark
matter. Thus, the net effect of free streaming in the hot dark matter is to wipe
out any density fluctuations whose wavelength is smaller than ∼ cth. When



the hot dark matter particles become nonrelativistic, there will be no density
fluctuations on scales smaller than the physical scale

(11.77)

corresponding to a comoving length scale

(11.78)

The total amount of matter within a sphere of comoving radius rmin is

(11.79)

Hot dark matter particles with mhc2 ∼ 50 eV will smear out fluctuations
smaller than the Local Group, particles with mhc2 ∼ 8 eV will rub out
fluctuations smaller than the Coma cluster, and particles with mhc2 ∼ 3 eV
will wipe away fluctuations smaller than superclusters.

The left panel of Figure 11.5 shows the power spectrum of density
fluctuations in hot dark matter, once the hot dark matter particles have cooled
enough to become nonrelativistic; the plot assumes that mhc2 = 3 eV and thus
rmin ≈ 55 Mpc. For wavenumbers k ≪ 2π/rmin ≈ 0.1 Mpc−1, the power
spectrum of hot dark matter (shown as the dotted line) is close to the original
P ∝ k spectrum (shown as the dashed line). However, the free streaming of
the hot dark matter results in a severe loss of power for wavenumbers k ≫
2π/rmin. The right panel of Figure 11.5 shows the root mean square mass
fluctuations, δM/M, calculated using Equation 11.70. For the original P ∝ k
spectrum (dashed line), the amplitude of density fluctuations is larger on
smaller mass scales, with δM/M ∝ M−2/3. However, for the hot dark matter
power spectrum (dotted line), the value of δM/M levels off on scales smaller



than M < Mmin ∼ 3 × 1016 M⊙. In a universe with this hot dark matter power
spectrum, the first structures to collapse are regions of mass M ∼ Mmin with
nearly uniform overdensity. These regions collapse to form superclusters;
smaller structures, such as clusters and galaxies, then form by fragmentation
of the superclusters. This scenario, in which the largest observable structures
form first, is called the top-down scenario.

Figure 11.5 Left panel: Power spectrum at the time of radiation–matter equality for cold
dark matter (solid line) and for hot dark matter (dotted line). The initial power spectrum
produced by inflation (dashed line) is assumed to have the form P(k) ∝ k. Right panel: The
root mean square mass fluctuations δM/M are shown as a function of M. Line types are the
same as in the left panel.

If most of the dark matter in the universe were hot dark matter with mhc2 ∼
3 eV, then we would expect the oldest structures in the universe to be
superclusters, and that galaxies would be relatively young. In fact, the
opposite seems to be true in our universe. Superclusters are just collapsing
today, while galaxies have been around since at least z ∼ 10, when the
universe was about half a gigayear old. Thus, most of the dark matter in the
universe must be cold dark matter, for which free streaming has been
negligible.

The evolution of the power spectrum of cold dark matter, given the
absence of free streaming, is different from the evolution of the power
spectrum for hot dark matter. Remember, when the universe is radiation-



dominated, density fluctuations  in the dark matter do not grow significantly
in amplitude, as long as their proper wavelength a(t)2π/k is small compared
to the Hubble distance c/H(t). However, when the proper wavelength of a
density perturbation is large compared to the Hubble distance, its amplitude
will be able to increase, regardless of whether the universe is radiation-
dominated or matter-dominated. If the cold dark matter consists of WIMPs,
they decouple from the radiation at a time td ∼ 1 s, when the scale factor is ad
∼ 3 × 10−10. At the time of WIMP decoupling, the Hubble distance is c/H ∼
2ctd ∼ 6 × 108 m. This corresponds to a comoving length scale

(11.80)

a mass scale

(11.81)

and a comoving wavenumber kd ∼ 2π/rd ∼ 105 Mpc−1. Thus, density
fluctuations with a wavenumber k < kd and a mass M > Md will have a
wavelength greater than the Hubble distance at the time of WIMP
decoupling, and will be able to grow freely in amplitude as long as their
wavelength remains longer than the Hubble distance.

How the fluctuations grow once their wavelength is smaller than the
Hubble distance depends on whether that transition happens before or after
the time of radiation–matter equality trm = 0.050 Myr, when the scale factor
was arm = 2.9× 10−4. At the time of radiation–matter equality, the Hubble
distance was c/H ≈ 1.8ctrm ≈ 0.027 Mpc. This corresponds to a comoving
length scale

(11.82)



a mass scale Mrm ≈ 1.3 × 1017 M⊙, and a comoving wavenumber krm = 2π/rrm
≈ 0.07 Mpc−1. Density fluctuations with a wavenumber k < krm and a mass M
> Mrm will remain larger than the Hubble distance during the entire radiation-
dominated era, and will grow steadily in amplitude during all that time. Thus,
for wavenumbers k < krm ≈ 0.07 Mpc−1, the power spectrum for cold dark
matter retains the original P(k) ∝ k form that it had immediately after
inflation (see the left panel of Figure 11.5). By contrast, cold dark matter
density perturbations with a wavenumber kd > k > krm will grow in amplitude
only until their physical wavelength a(t)r ∝ t1/2 is smaller than the Hubble
distance c/H(t) ∝ t. At that time, their amplitude is frozen until the time trm,
when matter dominates, and density perturbations smaller than the Hubble
distance are free to grow again. Thus, for wavenumbers k > krm, the power
spectrum for cold dark matter is suppressed in amplitude, with the
suppression being greatest for the largest wavenumbers (corresponding to
shorter wavelengths, which become smaller than the Hubble distance at an
earlier time).

The left panel of Figure 11.5 shows, as the solid line, the power spectrum
for cold dark matter (CDM) at the time of radiation–matter equality. Note the
broad maximum in the power spectrum at k ∼ krm ∼ 0.1 Mpc−1. The root mean
square mass fluctuations in the cold dark matter, δM/M, are shown as the
solid line in the right panel of Figure 11.5. The amplitude of the fluctuations
is normalized so that δM/M = 1 at M = 1014 M⊙. This normalization gives
agreement with the observed density fluctuations today on very large scales,
where δM/M < 1, and the growth of density perturbations is still in the linear
regime. At the time of radiation–matter equality, the amplitude of the density
fluctuations was smaller, with (δM/M)rm equal to ∼ arm ∼ 3×10−4 times the
value of δM/M shown in Figure 11.5. Notice that the mass fluctuations in the
CDM scenario are largest in amplitude for the smallest mass scales. This
implies that in a universe filled with cold dark matter, the first objects to form
are the smallest, with galaxies forming first, then clusters, then superclusters.
This scenario, called the bottom-up scenario, is consistent with the observed
relative ages of galaxies and superclusters.

Assuming that the dark matter consists of nothing but hot dark matter
gives a poor fit to the observed large scale structure of the universe.
However, there is strong evidence that neutrinos do have some mass, and



thus that the universe contains at least some hot dark matter. Cosmologists
studying the large scale structure of the universe can adjust the assumed
power spectrum of the dark matter, by mixing together hot and cold matter.
Comparison of the assumed power spectrum with the observed large scale
structure indicates that Ωhdm,0 ≤ 0.007. If the hot dark matter consists entirely
of the three standard flavors of neutrino in the cosmic neutrino background,
this implies an upper limit on the sum of the neutrino masses, with (Equation
2.26)

(11.83)

If there were more hot dark matter than this amount, free streaming of the hot
dark matter particles would make the universe too smooth on small scales.
Some like it hot, but most like it cold – the majority of the dark matter in the
universe must be cold dark matter.

Cosmologists frequently refer to the “ΛCDM model” for the universe.
This is the particular variant of the Hot Big Bang model in which the
dominant contributors to the energy density today are dark energy in the form
of a cosmological constant (this is the “Λ” of ΛCDM) and nonrelativistic
matter in the form of cold dark matter (this is the “CDM” of ΛCDM). The
basic ΛCDM model is spatially flat. The Greco-Roman abbreviation
“ΛCDM” was first used in the mid-1990s; in the years since then, the
accumulation of evidence has led the ΛCDM model to be adopted as the
standard model of cosmology.

11.6 Baryon Acoustic Oscillations
The cold dark matter power spectrum shown as the solid line in Figure 11.5
assumes that the only density fluctuations are the quantum fluctuations from
the inflationary era, as modified by gravitationally-driven growth. This would
be an excellent assumption if the only matter in the universe were cold dark
matter. Things become complicated, though, when we consider that 15
percent of the matter in the universe is baryonic. As far as gravity is
concerned, a kilogram of hydrogen is the same as a kilogram of WIMPs;
however, baryonic matter has the additional ability to interact with photons



through the electromagnetic force. This ability significantly changes the
amplitude of mass fluctuations in the universe. On relatively small mass
scales, the ability of baryonic matter to cool by emitting photons permits the
formation of high-density galaxies on a mass scale M < 1012 M⊙ and the
formation of ultra-high-density stars on a mass scale M < 100 M⊙. On mass
scales bigger than the largest supercluster, M > 1017 M⊙, the ability of
baryons to interact with photons has also placed its mark on the power
spectrum of density perturbations. It has done so through the mechanism of
baryon acoustic oscillations.

To understand the origin of baryon acoustic oscillations, go back in time
to the era when baryons decoupled from photons, at a redshift zdec ≈ zls ≈
1090. As we noted in Section 8.5, the densest regions in the photon–baryon
fluid at the time of last scattering were regions that had just managed to
compress themselves to maximum density before rebounding under their own
pressure. The size of these high density regions was comparable to the sound
horizon distance at the time of last scattering. From Equation 8.65, the sound
horizon distance had a physical length6

(11.84)

After the photons and baryons parted ways, the overdensity of the photons in
these high density regions reveals itself as hot spots on the last scattering
surface, with a characteristic angular size θ ≈ θs ≈ 0.7◦.

However, just as the overdense photons left an observable mark on the
universe, the overdense baryons left their mark as well. A physical size of ds
= 0.145 Mpc at a redshift zls = 1090 corresponds to a comoving length

(11.85)

This comoving length, called the acoustic scale, in turn corresponds to a
mass scale

(11.86)



The density fluctuations that are present on a comoving scale rs ≈ 160 Mpc
are called “baryon acoustic oscillations” since they are the baryonic
manifestation of the acoustic oscillations that were present in the photon–
baryon fluid just before decoupling. Immediately after decoupling, the baryon
overdensity on the scale rs was small in amplitude. However, the Matthew
effect has caused the initially low-amplitude density fluctuations to grow to
detectable levels at the present day. (Despite this growth, the density
fluctuations on a length scale rs ≈ 160 Mpc are still not high enough in
amplitude to destroy our assumption that the universe is homogeneous and
isotropic on scales larger than 100 Mpc.)

The best way to detect low-amplitude overdensities on a scale as large as
160 Mpc is to look at the correlation function of galaxies in space. Suppose
that the average number density of galaxies at the present day is ngal. Choose
a galaxy at random, then look at a small volume dV at a comoving distance r
from the chosen galaxy. The correlation function ξ(r) is a way of telling you
how many galaxies are likely to be found in that small volume dV. Expressed
mathematically, the expected number dN is given by the relation

(11.87)

If the galaxies have a Poisson distribution, then the correlation function is
ξ(r) = 0; the number of galaxies you expect to find is simply the number
density ngal times the volume dV. However, galaxies emphatically do not
have a Poisson distribution in space, as Figure 11.1 illustrates; instead, they
tend to cluster, giving a correlation function ξ that is positive at small
separations.

When discussing the correlation function C(θ) of temperature fluctuations
in the cosmic microwave background, we found it useful to break it down,
with the use of spherical harmonics, into different multipole moments l.
Similarly, it is useful to break down the correlation function ξ(r) for galaxies,
with the use of Fourier transforms, into different wavenumbers  In
particular, we can express the correlation function ξ(r) in terms of the
statistical properties of the initial mass fluctuations in the universe. On
sufficiently large scales, the galaxy distribution is a mapping of the mass



density distribution  that is, the number density of galaxies is highest in
regions where the initial overdensity δ was largest. For a Gaussian density
field  the correlation function ξ(r) is simply the Fourier transform of the
power spectrum P(k):

(11.88)

For an isotropic power spectrum P(k), this can be written as

(11.89)

where j0(x) = sin x/x is yet another spherical Bessel function. Since the power
spectrum P(k) and the correlation function ξ(r) are Fourier transforms of each
other, they contain the same information. Which one you chose in a given
situation depends on convenience. If you are doing a redshift survey of
galaxies, it is generally more convenient to compute the correlation function
ξ(r) of the galaxies’ distribution in space.

The acoustic scale is rs ≈ 160 Mpc ≈ 0.04c/H0. Thus, a redshift survey of
galaxies that goes to redshifts significantly greater than z ≈ 0.04 should have
the ability, if it contains enough galaxies, to observe an extra bump in the
correlation function ξ(r) at a comoving scale rs, reflecting the presence of
baryonic acoustic oscillations in the distribution of matter. Figure 11.6 shows
the correlation function ξ(r) for a sample of nearly a million luminous
galaxies in a redshift range 0.4 < z < 0.7, near the end of the matter-
dominated era. Notice the enhancement of ξ(r) at a comoving length scale r ∼
rs ∼ 160 Mpc. This “BAO bump” is a modern-day relic of the fluctuations
that were present in the photon–baryon fluid at the time of last scattering, tls ≈
0.37 Myr.



Figure 11.6 The correlation function as a function of comoving radius r. Points with error
bars are the data for a large sample of luminous galaxies from the Sloan Digital Sky
Survey. The solid line is a model including the effects of baryon acoustic oscillations. [data
from Anderson et al. 2014, MNRAS, 441, 24]

Baryon acoustic oscillations provide a useful tool for computing
cosmological parameters. Since the acoustic scale is a standard yardstick,
whose length is determined by well-understood physical principles, it can be
used, for instance, to probe the properties of dark energy. By seeing how the
angular size of the BAO bump varies with redshift during the recent dark-
energy-dominated era, we can determine (once we have enough data)
whether the dark energy is a simple cosmological constant with w = −1, or
whether it has a different value of w. In addition (once we have enough data),
we can determine whether w for dark energy is changing with time.

If we assume, for the moment, that the ΛCDM model is correct, and that
w = −1 for the dark energy, the location and amplitude of the BAO bump in
Figure 11.6 enable us to place further constraint on the values of Ωm,0 and
ΩΛ,0. For instance, in Figure 11.7, the gray contour gives the values of Ωm,0
and ΩΛ,0 that are consistent, at the 95% confidence level, with the type Ia
supernova results and the CMB temperature fluctuations observed by Planck.



The smaller black ellipse gives the 95% confidence interval once the BAO
measurements are added to the supernova and CMB measurements. The tiny
size of the black ellipse (centered on Ωm,0 = 0.305 and ΩΛ,0 = 0.696 for this
particular combination of data) is the result of a happy concurrence among
the three sources of information, and is the basis for the “Benchmark Model”
that we have been using in this text. The fact that the black ellipse clings so
closely to the κ = 0 line is also the source of the |Ω0 − 1| ≤ 0.005 limit that we
used when discussing the flatness problem in Section 10.1.

Figure 11.7 The gray elliptical contour gives the 95% confidence interval for Ωm,0 and
ΩΛ,0 from the joint supernova and CMB data (compare with Figure 8.7). The black
elliptical contour is the 95% confidence interval when the baryon acoustic oscillation
observations are added. [Anže Slosar & José Alberto Vázquez, BNL]

Exercises
11.1 Consider a spatially flat, matter-dominated universe (Ω = Ωm = 1) that

is contracting with time. What is the functional form of δ(t) in such a



universe?
11.2 Consider an empty, negatively curved, expanding universe, as

described in Section 5.2. If a dynamically insignificant amount of
matter (Ωm ≪ 1) is present in such a universe, how do density
fluctuations in the matter evolve with time? That is, what is the
functional form of δ(t)?

11.3 A volume containing a photon–baryon fluid is adiabatically expanded
or compressed. The energy density of the fluid is ε = εγ + εbary, and the
pressure is P = Pγ = εγ /3. What is dP/dε for the photon–baryon fluid?
What is the sound speed, cs? In Equation 11.26, how large an error did
we make in our estimate of λJ(before) by ignoring the effect of the
baryons on the sound speed of the photon–baryon fluid?

11.4 Suppose that the stars in a disk galaxy have a constant orbital speed v
out to the edge of its spherical dark halo, at a distance Rhalo from the
galaxy’s center. If a bound structure, such as a galaxy, forms by
gravitational collapse of an initially small density perturbation, the
minimum time for collapse is  Show that tmin ≈
Rhalo/v for a disk galaxy. What is tmin for our own galaxy? What is the
maximum possible redshift at which you would expect to see galaxies
comparable in v and Rhalo to our own galaxy? (Assume the Benchmark
Model is correct.)

11.5 Within the Coma cluster, as discussed in Section 7.3, galaxies have a
root mean square velocity of 〈v2〉1/2 ≈ 1520 km s−1 relative to the center
of mass of the cluster; the half-mass radius of the Coma cluster is rh ≈
1.5 Mpc. Using arguments similar to those of the previous problem,
compute the minimum time tmin required for the Coma cluster to form
by gravitational collapse.

11.6 Suppose that the density fluctuations  in the early universe
constitute a Gaussian field with a power spectrum P(k) that equals zero
above some maximum wavenumber kmax. This maximum wavenumber
corresponds to a minimum length scale rmin = 2π/kmax and a minimum
mass scale  Show that for M < Mmin, the mean
square mass fluctuation, 〈(δM/M)2〉, is equal to  for the density field.



1 Consider, for instance, the complicated politics that went into determining the location
of Washington, DC.

2 The singer-songwriter Billie Holiday may have summed it up best: “Them that’s got
shall have / Them that’s not shall lose.”

3 Slightly longer if you are using this book for recreational reading as you climb Mount
Everest.

4 What is sound, after all, but a traveling change in pressure?
5 At the risk of carrying the arboreal analogy too far, I should mention that the

temperature fluctuations of the cosmic microwave background, as shown in Figure 8.3,
offer us a look at the “sapling.”

6 Given the existence of an inflationary epoch, we must slightly redefine the sound
horizon distance as the distance traveled by sound since the universe was refilled with
particles at t ∼ tf ∼ 10−34 s, during the reheating period at the end of inflation.



12

Structure Formation: Baryons and Photons

If the only matter in the universe were cold dark matter, then structure
formation would be driven solely by gravity. Adding baryonic matter,
capable of absorbing, emitting, and scattering light, complicates the process
of structure formation. As we saw in Section 11.2, before the time of
decoupling at zdec = 1090, the baryonic matter was coupled to the photons,
thanks to the ability of photons and electrons to scatter from each other. At z
> 1090, therefore, the interaction of baryonic matter with photons prevented
dense baryonic lumps from forming. At lower redshifts, however, the
interaction of baryonic matter with photons encouraged dense baryonic
lumps to form, since the ability to radiate away excess thermal energy is
necessary to make objects with high mass density.

The average density of baryonic matter today, at t0 ≈ 13.7 Gyr, is

(12.1)

However, some parts of the universe are far above average when it comes to
baryonic density. Let’s look at a typical suburban location in a luminous
galaxy: the region within a few hundred parsecs of the Sun. In the solar
neighborhood, we find that the density of stars and interstellar gas is ρsn ≈
0.095 M⊙ pc−3 ≈ 6.4 × 10−21 kg m−3. This represents an overdensity

(12.2)

relative to the average baryonic density of the universe today. Now let’s look
at an individual main sequence star: the Sun itself. The Sun’s average internal
density is ρ⊙ ≈ 1400 kg m−3, representing an overdensity δ⊙ ∼ 3 × 1030



relative to the average baryonic density today.1 However, although baryons
are capable of forming very dense objects, the majority of baryonic matter
today is still in the form of low density intergalactic gas. To understand why
some of the baryonic matter in the universe forms condensed knots such as
stars, while most remains low in density, we start by making a census of the
baryonic matter in the universe today.

12.1 Baryonic Matter Today
Although we know the average baryon density ρbary,0 quite well, the task of
making a more detailed census of neutrons and protons (and their electron
sidekicks) is frustratingly difficult. For example, in Section 7.1, we attempted
to find the mass density of stars today, ρ⋆,0. Since stars glow at wavelengths
that astronomers are highly experienced at detecting, stars should be the
easiest baryonic component to detect. Nevertheless, we made only the rough
estimate (Equation 7.4)

(12.3)

representing about 7 percent of the baryonic mass. Estimates of the other
contributions to the baryonic matter are equally rough, if not more so. With
that caveat in mind, Figure 12.1 shows how the baryonic component of the
universe is divided up. The wedge labeled “Stars, etc.” represents the 7% of
the baryonic matter that is in the form of stars, stellar remnants, brown
dwarfs, and planets. Proceeding clockwise around the pie chart of Figure
12.1, about 1% of the baryonic mass is in the interstellar gas that fills the
space between stars within the luminous portion of a galaxy. About 3% is in
the circumgalactic gas that is gravitationally bound within the dark halo of a
galaxy, but lying outside the main distribution of the galaxy’s stars. (Since
there is no clean dividing line between the interstellar gas and the
circumgalactic gas, you can think of them together as gas associated with
individual galaxies, providing about 4% of the baryonic matter in the
universe.) Approximately 4% of the baryonic matter is in the intracluster gas
that is gravitationally bound within a cluster of galaxies, but is not bound to
any particular galaxy within the cluster; we have already encountered



intracluster gas (Figure 7.3) in the form of the hot, X-ray emitting gas of the
Coma cluster. Thus, we conclude that baryonic matter associated with
gravitationally bound systems (galaxies and clusters of galaxies) contributes
just 15 percent of the total baryonic matter in the universe.

Figure 12.1 An approximate division of the current baryonic mass of the universe into its
various components.

Where are the rest of the baryons? In the 1990s, astronomers began
talking of a “missing baryon problem,” when they began to realize that the
baryonic matter in galaxies and clusters falls far short of ρbary,0. The missing
baryons, however, aren’t truly missing; they are simply in a low-density and
inconspicuous intergalactic medium. As shown in Figure 12.1, about 40% of
the baryonic matter is in the diffuse intergalactic gas, which consists of gas
widely distributed outside galaxies and clusters, at a temperature T < 105 K.
The remaining ∼ 45% of the baryonic matter is in the warm-hot intergalactic
gas, which is hotter than the diffuse intergalactic gas, typically having 105 K
< T < 107 K.2 The warm-hot intergalactic gas is found in long filaments
between clusters, as compared to the more smoothly distributed diffuse
intergalactic gas.

One striking characteristic of intergalactic gas is its low density. Most of



the volume in the universe today is filled with diffuse intergalactic gas with δ
≤ 0. Even the warm-hot intergalactic gas, which tends to be higher in density,
typically lies in the overdensity range 3 < δ < 300. Another striking
characteristic of intergalactic gas today is its high degree of ionization. In
most of the intergalactic gas, the fractional ionization of hydrogen, X, is very
close to one. However, when we looked at the physics of recombination in
Section 8.3, we noted that in the early universe, between z = 1480 and z =
1260, the fractional ionization of hydrogen plummeted from X = 0.9 to X =
0.1. Obviously, something happened after the epoch of recombination that
reionized the hydrogen in the universe.

How was hydrogen reionized? To answer that question, it helps to ask the
preliminary question, “When was hydrogen reionized?” Hydrogen was
mostly neutral just after recombination (z ≈ 1380); it is mostly ionized today
(z ≈ 0). The time that elapses between z ≈ 1380 and z ≈ 0 is t ≈ 0.99998t0 ≈
13.7 Gyr. If we could pin down the time of reionization just a little more
closely than that, we would have a useful clue about what physical
mechanisms might be ionizing the hydrogen. (I am focusing on the
reionization of hydrogen, and ignoring helium, for the same reason I focused
on hydrogen while discussing recombination in Section 8.2. Adding helium,
and other heavier elements, makes the analysis more complicated
mathematically, without changing the basic physical conclusions.)

12.2 Reionization of Hydrogen
Although we mainly think of the cosmic microwave background as telling us
about the epoch of last scattering (zls ≈ 1090), it also contains useful
information about the universe at lower redshifts. The reionized intergalactic
gas provides an obstacle course of free electrons that the photons of the CMB
must pass through to reach our microwave antennas. Each free electron has a
cross-section σe = 6.65 × 10−29 m2 for scattering with a photon. The rate at
which a CMB photon scatters from free electrons in the reionized gas is
(compare to Equation 8.14)

(12.4)



where ne is the number density of free electrons. If the baryonic matter is
reionized starting at a time t∗, then the optical depth for scattering from the
reionized gas is (compare to Equation 8.43)

(12.5)

If the optical depth of the reionized gas were τ∗ ≫ 1, then each CMB photon
would be scattered many times in passing through the reionized gas, losing
all information about its original direction of motion. Our view of the cosmic
microwave background would then be completely smeared out, as if we were
looking through a translucent screen. The fact that we can see temperature
fluctuations down to small angular scales in the CMB, as shown in Figure
8.3, tells us that the optical depth of the reionized gas must be τ∗ < 1.

Looking out at the distant last scattering surface through the nearby
reionized gas is like looking out through a slightly frosted window rather than
one made of perfectly transparent glass. As a consequence, the CMB shows a
small amount of smearing on small angular scales, corresponding to large
values of the multipole l. The temperature fluctuations measured by the
Planck satellite show slight suppression at high l compared to what you
would expect in the absence of reionization. The amount of suppression is
consistent with an optical depth τ∗ = 0.066 ± 0.016 for the reionized gas. That
is, about one CMB photon in 15 scatters from a free electron at low redshift.

We can use the optical depth τ∗ to estimate the time t∗ of reionization, if
we make some assumptions. First, let’s assume the baryonic portion of the
universe is pure hydrogen, either in the form of neutral atoms, with number
density nH, or in the form of free protons, with number density np. With this
assumption,

(12.6)

Next, let’s assume that the hydrogen undergoes complete, instantaneous
reionization at the time t∗. In that case, the number density of free electrons



before reionization is ne = 0, and the number density after reionization (t > t∗)
is

(12.7)

Plugging this estimate for the number density of free electrons into the
relation for optical depth (Equation 12.5), we find

(12.8)

where

(12.9)

is the rate at which photons would scatter from free electrons today, if the
baryonic matter were a perfectly uniform distribution of fully ionized
hydrogen.

Changing the variable of integration from t to a, Equation 12.8 becomes

(12.10)

using the fact that H = ȧ/a. Alternatively, we can find the redshift of
reionization, z∗, by making the substitution 1 + z = 1/a:

(12.11)

During recent times, when the matter-dominated universe has been giving
way to the lambda-dominated universe, the Hubble parameter has been, from
Equation 5.96,



(12.12)

Inserting this functional form for H(z) into Equation 12.11 gives an integral
with the analytic solution

(12.13)

Using the relevant parameters from the Benchmark Model, the optical depth
for scattering in the reionized universe is

(12.14)

Given the observed optical depth, τ∗ = 0.066 ± 0.016, we find that the redshift
of reionization was z∗ = 7.8 ± 1.3, corresponding to an age for the universe t∗
∼ 650 Myr. Thus, the “era of neutrality,” when the baryonic matter consisted
mainly of neutral atoms, was a relatively brief interlude in the history of the
universe, with t∗ − trec ∼ 0.05t0.

One way to ionize hydrogen is to bombard it with photons of energy hf >
Q = 13.6 eV. The obvious place to look for sources of ionizing photons at z ≥
8 is in galaxies. The highest redshift galaxies that have been discovered (so
far) are at z ∼ 10, so we know that galaxies were present at the time of
reionization. One source of ionizing photons in galaxies is the hot, luminous
O stars that contribute much of the luminosity in star-forming galaxies. Only
the most massive O stars, those with M ≥ 30 M⊙, are hot enough to contribute
significantly to the background of ionizing ultraviolet radiation. As an
example, an O star with M ≈ 30 M⊙ produces ionizing photons at a rate 

 Thus, during its entire lifetime t ≈ 6 Myr ≈ 2 × 1014 s, the
star will produce  ionizing photons.

Another source of ionizing photons in a galaxy is an active galactic
nucleus, or AGN. An AGN is a compact central region of a galaxy that is
luminous over a broad range of the spectrum, including the range hf > 13.6
eV required to ionize hydrogen. AGNs are compact because they are fueled



by accretion of matter onto a black hole. Luminous galaxies usually have a
supermassive black hole at their center. The central black hole of our own
galaxy, for instance, has a mass Mbh ≈ 4 × 106 M⊙, and thus a Schwarzschild
radius 2GMbh/c2 ≈ 0.08 AU. The galaxy NGC 4889, one of the two brightest
galaxies in the Coma cluster (Figure 7.2), has a central black hole with mass
Mbh ≈ 2 × 1010 M⊙ and Schwarzschild radius 2GMbh/c2 ≈ 400 AU. If a
supermassive black hole is accreting gas, the heated gas can emit light before
it slips through the event horizon; the energy of the light can be as much as
0.1mc2, where m is the mass of the accreted gas. A significant fraction of this
emitted light takes the form of ionizing ultraviolet photons with hf > 13.6 eV,
coming from a region not far outside the Schwarzschild radius of the black
hole. For a luminous AGN, the rate of production of ionizing photons is
approximately

(12.15)

The most luminous active galactic nuclei, with L > 1013L⊙, are often referred
to as quasars.3 A quasar with L ∼ 1013 L⊙ can emit as many ionizing photons
in a month as our example O star does in its entire 6 million year lifetime.

12.3 The First Stars and Quasars
The time between recombination and the formation of the first stars and AGN
is known to astronomers as the “Dark Ages” of the universe. The adjective
“Dark,” however, refers merely to the absence of starlight. The photons of the
CMB were present during the Dark Ages. Indeed, immediately after the time
of last scattering, at zls ≈ 1090, the temperature of the cosmic background
radiation was T ≈ 2970 K, about the temperature of an M star. If Heinrich
Olbers had lived at the time of last scattering (admittedly an extremely large
“if”), he would not have formulated Olbers’ paradox. At t ≈ tls ≈ 0.37 Myr,
the entire sky was as bright as the surface of a star.

By the time the cosmic background radiation had cooled to a temperature



T ≈ 140 K, at z ≈ 50, the universe was filled with a cosmic far infrared
background, utterly ineffective at ionizing hydrogen. However, as shown in
Figure 12.2, a redshift z ≈ 50, corresponding to a cosmic time t ≈ 50 Myr, is
about the time when the very first stars began to emit light.4 The Dark Ages
ended as increasingly large numbers of stars and AGN poured out photons,
some of them with hf > 13.6 eV. Figure 12.2 illustrates, in a schematic way,
how regions of reionized gas began to grow around isolated galaxies, until
the regions merged to form a single ionized intergalactic medium at z ∼ 8.

Figure 12.2 Schematic overview of the epoch of reionization; redshift decreases, and thus
time increases, from right to left. The gray of the “Dark Ages” represents a gas of neutral
atoms, while the white intergalactic spaces of the present day represent ionized gas.

One complicating factor with using light from O stars and AGN to
reionize intergalactic gas is that much of the ionizing radiation never escapes
into intergalactic space. Instead, it is absorbed by the gas and dust within the
galaxy in which the O star or AGN exists. The escape fraction, fesc, represents
the fraction of ionizing photons that actually leak out into the intergalactic
gas. The escape fraction is poorly determined; as an optimistic first guess, we
can adopt fesc = 0.2, both from hot stars and from AGN. Now, let’s consider a
comoving cubic megaparsec of space, expanding along with the universal



expansion, and compute how many ionizing photons we need to reionize its
hydrogen. The comoving number density of baryons in intergalactic space is

nbary = 0.25 m−3 = 7.3 × 1066 Mpc−3. (12.16)

In our pure hydrogen approximation, ionizing this many neutral hydrogen
atoms requires a comoving number density of ionizing photons equal to

n∗ = nfbary = 3.7 × 1067 Mpc−3 0.2f. (12.17)

Thus, assuming an escape fraction fesc ≈ 0.2, ionizing a comoving cubic
megaparsec of hydrogen requires N∗ ∼ 4 × 1067 ionizing photons; this is the
number created by ∼ 40 000 O stars, or by a 1013L⊙ quasar shining for 4000
yr.

Given the immense ultraviolet luminosity of a quasar compared to even
the hottest, brightest stars, it is tempting to assume that quasars perform most
of the reionization. However, quasars, in addition to being breathtakingly
luminous, are breathtakingly rare. Surveys like the 2dF survey and the Sloan
Digital Sky Survey permit us to make quantitative statements about the
scarcity of quasars as a function of time (or equivalently, of redshift). Figure
12.3 summarizes how the number of luminous quasars per comoving cubic
megaparsec has changed over time. The comoving number density of quasars
was greatest at a redshift z ≈ 2.5, corresponding to a cosmic time t ≈ 2.6 Gyr,
long after reionization was complete. The comoving number density of
quasars at z∗ ≈ 8 is more uncertain. Even the optimistic extrapolation shown
in Figure 12.3 suggests that the number density was one luminous quasar for
every ∼ 1010 comoving cubic megaparsecs. If reionizing one comoving cubic
megaparsec of hydrogen requires 4000 years’ worth of a quasar’s luminosity,
then reionizing ∼ 1010 comoving cubic megaparsecs would require ∼ 40 000
Gyr. Since the age of the universe at the time of reionization was only t ∼
0.65 Gyr, luminous quasars could have reionized only a small fraction of the
intergalactic hydrogen.



Figure 12.3 Evolution of the comoving number density of luminous quasars, based on data
from the 2dF survey and the Sloan Digital Sky Survey. Redshift decreases, and thus time
increases, from right to left. [Fan 2012, RAA, 12, (8), 865]

Adding the ionizing radiation from lower-luminosity AGN to that from
luminous quasars will help to boost the number of ionizing photons created.
We know that in the present universe, there are more AGN with low
luminosity than there are quasars with high luminosity. However, if the
luminosity function of AGN at z∗ ∼ 8 is at all similar to that at z ∼ 0, then
even adding the efforts of the lower-luminosity AGN will be inadequate to
reionize the universe using the light from active galactic nuclei alone. It
seems that most of the photons that reionized the universe came from hot,
luminous stars.

At the present time, some galaxies are actively forming stars, while others
are quiescent. However, if we average over a large volume containing a
representative sample of galaxies, we find that the star formation rate today is

 Since the baryon density today is ρbary,0 ≈ 6 ×
109 M⊙ Mpc−3, this means that 3 parts per million of the universe’s baryons
are being converted into stars every million years. However, studies of star
formation at higher redshifts reveal that the star formation rate has varied
with time. Figure 12.4, for instance, shows an observationally based estimate



of the star formation rate per comoving cubic megaparsec as a function of
redshift. The rate at which stars form today (within a comoving volume) is
down by a factor of 10 from its maximum in the redshift range z = 4 → 1,
corresponding to cosmic times t = 1.5 → 6 Gyr.5

Figure 12.4 Evolution of the comoving density of star formation in the universe. Redshift
decreases, and thus time increases, from right to left. [adapted from Yüksel et al. 2008,
ApJ, 683, 5]

At the time of reionization, z∗ ≈ 8, the star formation rate per comoving
volume was about the same as it is today:

(12.18)

However, not all stars are equally useful for reionizing the intergalactic gas.
In a comoving cubic megaparsec where stars are created at a rate of 20 000
M⊙ Myr−1, only ∼ 2000 M⊙ Myr−1, or about 10 percent of the total, will take
the form of O stars with M ≥ 30 M⊙, hot enough to emit a significant number
of ionizing photons. If we make the simplifying assumption that all the O



stars have M ≈ 30 M⊙, this implies the production of ∼ 67 new O stars per
comoving cubic megaparsec every million years. Since the lifetime of a 30
M⊙ star is ∼ 6 Myr, this means there will be about 400 O stars present per
comoving cubic megaparsec at any time, as long as the star formation rate
remains at the level given by Equation 12.18. With 400 O stars each emitting
ionizing photons at a rate  5 × 1048 s−1, this means that the total rate of
ionizing photon production per comoving cubic megaparsec is

(12.19)

If we compare this rate to the total number n∗ of ionizing photons required to
reionize the hydrogen in the same comoving volume (Equation 12.17), we
find that the star formation has to continue for a time

(12.20)

in order to reionize the intergalactic gas. As long as fesc ≥ 0.2, this time is not
impossibly long compared to the age of the universe at the time it was
reionized, t∗ ≈ 650 Myr. Although many of the details of reionization remain
to be worked out, this back-of-envelope accounting indicates that massive
stars are capable of emitting most of the photons required to reionize the
intergalactic gas.

Reionizing the baryonic universe with starlight requires forming stars at a
comoving rate  for a time t ≈ 600 Myr. By the
time reionization is complete, the comoving number density of stars that have
been formed is  or about 0.2% of the total
baryon density. Thus, converting one part in 500 of the baryonic mass into
stars has the side effect of reionizing the remaining baryonic gas. At times t >
t∗, the ongoing star formation sketched out in Figure 12.4 drives the stellar
mass density up to ρ⋆,0 ≈ 4 × 108 M⊙ Mpc−3 today. The accompanying
production of ionizing photons from O stars (with help from AGN) enables



the intergalactic medium to remain ionized despite the existence of radiative
recombination.

12.4 Making Galaxies
The current mass density of stars, ρ⋆ ≈ 4×108 M⊙ Mpc−3, produces a
luminosity density ΨV = 1.1 × 108 L⊙,V Mpc−3. In addition, this mass density
implies a stellar number density n⋆ ∼ 109 Mpc−3 (the number we used back in
Section 2.1, discussing Olbers’ paradox). These stars are not uniformly
distributed in space; instead, they tend to be contained within galaxies, which
consist of a relatively small concentration of stars and interstellar gas in the
midst of a larger halo, consisting mainly of dark matter with only a tenuous
circumgalactic gas of baryons.

The observed luminosity function for galaxies, Φ(L), is defined so that
Φ(L)dL is the number density of galaxies in the luminosity range L → L + dL.
It is found that the luminosity function is well fitted by the function6

(12.21)

Surveys in the V band find a power-law slope α ≈ −1, a normalization Φ∗ ≈
0.005 Mpc−3, and a characteristic luminosity  comparable
to the luminosity of our own galaxy. Figure 12.5 shows a characteristic
luminosity function for galaxies.



Figure 12.5 The luminosity function of galaxies today, observed in the V band. A
Schechter function is assumed, with α = −1 and Φ∗ = 0.005 Mpc−3. The vertical dotted line
indicates the value of 

Thanks to the exponential cutoff in the Schechter function, galaxies with L
> L∗ are exponentially rare. Although a few galaxies with L ≈ 10L∗ exist,
such as NGC 4889 and NGC 4874 in the Coma cluster, they are very
uncommon. They exist only in rich clusters of galaxies, where they have
grown to vast size by cannibalizing other galaxies.7 Our own galaxy, with 

 has a baryonic mass Mbary ≈ 1.2 × 1011 M⊙,
including all its interstellar and circumgalactic gas. Its total mass, provided
mostly by the dark halo, is Mtot ≈ (1 → 2) × 1012 M⊙, depending on how far
the halo extends. The exponential cutoff in the luminosity function at 

 indicates that it is very difficult to make galaxies with a baryonic
mass Mbary > 1011 M⊙ and a total mass Mtot > 1012 M⊙. It is definitely
possible to make dark halos with a mass greater than 1012 M⊙; the dark halo
of the Coma cluster, for instance, has M ≈ 2 × 1015 M⊙. However, highly
massive dark halos embrace multiple smaller galaxies rather than a single
gargantuan galaxy. This hints that the difficulty in making jumbo galaxies,



with LV > 2 × 1010 L⊙,V and Mbary > 1011 M⊙, must have something to do with
the properties of baryons rather than the properties of dark matter.

To see why there is an upper limit on the size of galaxies, we need a
simplified model of how a galaxy forms. Consider a spherical overdense
region at the time of radiation–matter equality (trm ≈ 0.050 Myr); this sphere
will eventually become a luminous, star-filled galaxy and its surrounding
dark halo. Initially, the relation among the mass M of the sphere, its radius R,
and its overdensity δ is given by Equation 11.5:

(12.22)

where ρm(t) = ρm,0(1 + z)3 is the average mass density of the universe at time t
and redshift z = 1/a(t) − 1.

At first, the overdensity is small: δ(trm) = δrm ≪ 1. As long as δ(t) ≪ 1,
the sphere’s expansion is nearly indistinguishable from the Hubble expansion
of the universe. However, the sphere reaches a maximum radius, and begins
to collapse under its self-gravity, at the time tcoll when δ(tcoll) ≈ 1. Given that
δ ∝ a ∝ t2/3 during the matter-dominated epoch, we can make the
approximation that  or

(12.23)

Thus, regions with a higher initial overdensity δrm will collapse at an earlier
time, corresponding to a higher redshift.

At the moment when the sphere starts to collapse, its density ρ is

(12.24)

After the sphere collapses, it oscillates in and out a few times before coming
into an equilibrium state; it is now a gravitationally bound halo with a radius
Rhalo ≈ R(tcoll)/2. The process by which the collapsing structure comes into
equilibrium is called “virialization,” since the resulting halo obeys the virial



theorem. Since the radius of the virialized halo is half the radius it had at tcoll,
the average density of the halo is now

(12.25)

From the average density of a galaxy’s virialized halo, you can deduce when
it started its collapse. For instance, the mass of our own galaxy, contained
mainly in its dark halo, is (from Equation 7.12)

(12.26)

giving an average density

(12.27)

Combined with Equation 12.25, this implies that our own galaxy started its
collapse at a redshift given by the relation

(12.28)

The process of virialization is not gentle; it involves subclumps of
baryonic gas slamming into each other, creating shocks that heat the gas. A
possible end state for the hot gas is a spherical distribution in hydrostatic
equilibrium. (As an example of such an end state, consider the hot
intracluster gas in the Coma cluster, shown in Figure 7.3.) We can compute
how hot the gas must be to remain in hydrostatic equilibrium. From Equation
7.41, a sphere of gas in hydrostatic equilibrium obeys the relation



(12.29)

where M(r) is the total mass within a radius r and μ is the mean mass per gas
particle. For an ionized primordial mix of hydrogen and helium, with Y = Yp
= 0.24, the mean mass is μ = 0.59mp. For simplicity, assume a single
temperature Tgas for all the gas in the halo, and a power law ρgas ∝ r−β for the
gas profile. Evaluated at r = Rhalo, where M(r) = Mtot, the equation of
hydrostatic equilibrium yields

(12.30)

This temperature is known as the virial temperature for gas in a virialized
halo. Since the halo radius is

(12.31)

we can rewrite the virial temperature as a function of a halo’s mass Mtot and
the redshift zcoll at which its collapse began:

(12.32)

Massive halos that collapsed early (and thus have high density) have the
highest virial temperature.

If we assume the gas in the halo is hot enough to be mostly ionized, then μ
≈ 0.6mp. Dark halos today have ρ ∝ r−2; if the hot gas started with a similar
profile to the dark matter, we can take β ≈ 2, and compute a numerical value
for the temperature of the hot gas:



(12.33)

Here, I have scaled the value of 1 + zcoll to a collapse starting at redshift zcoll
= 4, at the start of the intense star-forming era, and consistent with the value
for our own galaxy.

A universe with cold dark matter is a “bottom-up” universe, in which low-
mass halos tend to collapse at earlier times than high-mass halos. However,
the right panel of Figure 11.5 reminds us that the root mean square density
fluctuation, δM/M, is not strongly dependent on mass; at M ∼ 1012 M⊙, the
dependence is δM/M ∝ M−0.14. Thus, the redshift of collapse should be only
weakly dependent on halo mass. Consider, for example, a halo of mass Mtot
that started as a modestly unusual 2σ density fluctuation; that is, at the time of
radiation-matter equality, it had an overdensity δrm equal to 2× (δM/M)rm. For
a halo mass Mtot = 1012 M⊙, a 2σ fluctuation started its collapse at a redshift
zcoll ≈ 3.4, and thus had a virial gas temperature Tgas ≈ 9 × 105 K. For a much
smaller halo mass, Mtot = 1010 M⊙, a 2σ fluctuation started its collapse earlier,
at zcoll ≈ 6.7, and had a virial temperature Tgas ≈ 70 000 K. For a much larger
halo mass, Mtot = 1014 M⊙, a 2σ fluctuation started its collapse later, at zcoll ≈
1.0, and had a virial temperature Tgas ≈ 9 × 106 K.

This dependence of virial temperature on halo mass is the key to
understanding why a low-mass halo can form a luminous, dense, star-filled
galaxy and a high-mass halo cannot. To form a dense galaxy at the center of
the dark halo, the baryonic gas must be able to cool by emitting light that
escapes into intergalactic space. As it cools, the gas is no longer supported by
pressure in a state of hydrostatic equilibrium, and falls to the halo’s center.
The scarcity of galaxies with mass Mtot > 1012 M⊙ results from the fact that
the hotter baryonic gas in higher mass halos is less efficient at radiating away
its thermal energy.

Consider a 1010 M⊙ halo, with a virial temperature Tgas ≈ 70 000 K. At this
temperature, although the hydrogen is ionized by collisions with other gas
particles, the helium atoms are still able to retain one of their electrons. A
He+ ion is able to radiate energy efficiently by line emission, as the remaining



bound electron is excited to higher levels by collisions, then emits light as it
falls back to the ground state. In general, halos with Tgas < 106 K don’t have
their hydrogen and helium completely ionized, and can cool quickly by line
emission from He+ or, at lower temperatures, from neutral He and H.

By contrast, halos with Tgas > 106 K have hydrogen and helium that is
almost completely ionized. In these halos, the ionized gas cools primarily by
bremsstrahlung, also called free-free emission. Bremsstrahlung radiation is
produced when a free electron is accelerated as it passes near a free proton or
positively charged ion.8 For a fully ionized primordial mix of hydrogen and
helium, the luminosity density for bremsstrahlung emission is

(12.34)

Since the low-density gas is highly transparent, all this luminosity is able to
escape from the halo. The energy that is being radiated away is the thermal
energy of the gas, which has energy density

(12.35)

The time it takes the ionized gas to cool by bremsstrahlung emission is then

(12.36)

Thus, if gas at T > 106 K is to cool in times less than the age of the universe,
it must have a density ρgas > 10−24 kg m−3. Is this a plausible density for gas
in a virialized halo?

Suppose that the baryonic gas makes up a fraction f of the total mass of
the virialized halo; if the baryon fraction in the halo is the same as that of the
universe as a whole, we expect f = 0.048/0.31 = 0.15. The average mass
density of the baryonic gas is then, making use of Equation 12.25,



(12.37)

We conclude that a virialized halo with Mtot ∼ 1012 M⊙ that starts its collapse
at zcoll > 4 will be hot enough to cool by bremsstrahlung (from Equation
12.33), and will be dense enough (from Equation 12.37) to cool in a time
shorter than the age of the universe. However, we can also show that it is
statistically unlikely for a halo with mass much larger than 1012 M⊙ to
collapse at a high enough redshift to be able to cool.

To begin our statistical analysis, consider the very first 1014 M⊙ halo to
have collapsed in the entire directly observable universe. (If the baryons in
this halo could cool to form a single luminous galaxy, it would have ten times
the baryonic mass of the huge cannibal galaxy NGC 4889.) Since the last
scattering surface lies at a proper distance dp(t0) ≈ 14 000 Mpc, the total
amount of mass inside the last scattering surface (and thus visible to our
telescopes) is

(12.38)

We can divide this mass into 4.3 × 109 different regions, each of mass 1014

M⊙. The very first 1014 M⊙ halo to collapse is the one region out of 4.3 billion
that had the highest overdensity at the time of radiation–matter equality. You
can think of it as having won a “density lottery” with a probability P = 1/4.3
× 109 ≈ 2.3 × 10−10 of drawing the winning ticket. In a Gaussian distribution,
this probability is equivalent to a 6.2σ deviation. From the cold dark matter
δM/M distribution (Figure 11.5), we can compute that a region of mass M =
1014 M⊙ with a 6.2σ overdensity begins its collapse at a redshift zcoll ≈ 5.2.
After virialization, its gas has a virial temperature Tgas ≈ 2.3 × 107 K (from
Equation 12.33) and an average density ρgas ≈ 1.5 × 10−24 kg m−3 (from
Equation 12.37). The cooling time for the gas, from Equation 12.36, is
therefore tcool ≈ 42 Gyr, longer than the present age of the universe.



Moreover, the 1014 M⊙ halos that collapse later will have slightly lower virial
temperatures, but much lower densities. Therefore, the later-collapsing halos
have even longer cooling times than the pioneering 1014 M⊙ halo.

To adapt the “spherical cow” joke common among physicists, I’ve been
using a “spherical, isothermal, virialized cow” model for the formation of
galaxies. The true picture, unsurprisingly, is more complex. In particular,
computer simulations of galaxy formation indicate that in a more realistic
non-spherical collapse, not all the baryonic gas is shock-heated to the virial
temperature Tgas. The relatively cold gas that escapes being heated is able to
flow to the center of the halo on time scales shorter than the cooling time of
Equation 12.36. These “cold flows” of gas, as they are called, permit the
formation of the first galaxies at higher redshifts, signaling the end of the
Dark Ages and the beginning of reionization. The portion of the baryonic gas
that is shock-heated, however, must obey the cooling time argument. Thus,
the spherical, isothermal, virialized model explains why the hot intracluster
gas in a massive halo (like that of the Coma cluster) fails to form a single
gargantuan galaxy with baryonic mass Mbary ≫ 1011 M⊙.

12.5 Making Stars
Suppose that a collapsed, virialized halo contains gas that is below the virial
temperature Tgas of Equation 12.30. This can be either because the gas is part
of a cold flow that was never shock-heated, or because it cooled rapidly by
line emission or bremsstrahlung. The gas is out of hydrostatic equilibrium,
and falls toward the center of the dark halo. What happens to the cool,
infalling gas then? We know it isn’t all swallowed by the central
supermassive black hole. In the local universe, the mass of a galaxy’s central
black hole is less than 1% of the total baryonic mass of the galaxy. (Even the
extraordinarily massive black hole in the galaxy NGC 4889, with Mbh ∼ 2 ×
1010 M⊙, is small compared to the total baryonic mass of that bloated
cannibal galaxy, Mbary ∼ 2×1012 M⊙.) If 105 M⊙ of gas cools and falls inward,
we know it doesn’t form into a single “megastar.” We also know that it
doesn’t form a trillion “microstars,” each of mass ∼ 10−7 M⊙. Instead, it forms
about a million stars and brown dwarfs, with a typical mass M⋆ ∼ 0.1 M⊙ and



a power-law tail to higher masses, as illustrated in the initial mass function of
Figure 7.1.

In our own galaxy, stars are observed to form in the dense central cores of
molecular clouds, regions of interstellar gas that are relatively cold and
dense; in these regions hydrogen takes the form of molecules (H2) rather than
individual atoms. In the dense cores of molecular clouds, the mass density is
as high as ρcore ∼ 10−15 kg m−3. This is more than 1012 times ρ bary,0, the mean
density of baryons today. However, it is still less than 10−18 times ρ⊙, the
mean density of the Sun. In the interstellar gas of our galaxy, the helium mass
fraction has been raised, by pollution from early generations of stars, from its
primordial value Yp = 0.24 to a current value Y = 0.27.9 The helium mass
fraction is X = 0.72, leaving a mass fraction Z = 0.01 in other elements,
primarily oxygen and carbon. Part of the carbon and oxygen is in the form of
molecules and radicals such as CO, CH, and OH; however, some condenses
into tiny dust grains made of silicates (minerals containing oxygen and
silicon) or graphite (pure carbon). A molecular cloud core is dusty enough to
be opaque at visible wavelengths; cores seen against a background of stars
are called “dark nebulae.”10 A typical temperature for a molecular cloud core
is Tcore ≈ 20 K. This temperature results from a balance between heating by
cosmic rays (high-energy charged particles that can penetrate the opaque
core) and cooling by far infrared radiation from dust grains.

The dynamical time in a molecular cloud core is (Equation 11.13)

(12.39)

The mean molecular mass in a molecular cloud, given its mixture of H2 and
He, is μ = 2.3mp. This results in an isothermal sound speed

(12.40)

only slightly slower than the sound speed in air at room temperature. The



Jeans length in the molecular cloud core is then (Equation 11.20)

(12.41)

This means that the baryonic Jeans mass within a dense molecular cloud core
is

(12.42)

Since objects smaller than MJ are pressure-supported, this seems to indicate
that regions of a molecular cloud that are less massive than ∼ 15 M⊙ cannot
collapse to form stars. A look at the initial mass function of stars, plotted in
Figure 7.1, reveals that this conclusion is nonsense. Stars with M⋆ > 15 M⊙

are O stars, the rarest type of star; the preferred mass for stars is actually M⋆ ∼
0.1 M⊙.

The reason why molecular clouds can make stars smaller than the Jeans
mass is that collapsing cores can cool. Consider a molecular cloud core of
mass Mcore ≈ 15 M⊙, just above the Jeans mass. It contains a total of N =
Mcore/μ = 7.8 × 1057 gas particles and has a thermal energy

(12.43)

The core starts its collapse. If energy didn’t flow out of (or into) the core, the
first law of thermodynamics tells us that the thermal energy would increase at
the rate



(12.44)

Since the core’s volume is  this implies

(12.45)

If the core is to remain at a constant temperature Tcore during its collapse, it
must radiate away the increased thermal energy at the same rate it is
generated. The luminosity required to keep the core at a constant temperature
(let’s call it the “isothermal luminosity”) is

(12.46)

For a freely collapsing core, dRcore/dt ≈ Rcore/tdyn, and the isothermal
luminosity at Tcore = 20 K is

(12.47)

Thus, as long as the core radiates away energy at a minimum rate Liso ∼ 0.015
L⊙, it can maintain a constant temperature of Tcore = 20 K as it collapses on a
dynamical time. But what will be the actual luminosity L of a molecular
cloud core?

The main source of emission from a dusty molecular cloud core is the far
infrared light from its dust grains. Looking at a dusty dark nebula, as in the
left panel of Figure 12.6, our first guess might be that since it’s an opaque
object with a well-defined temperature Tcore, its luminosity is that of a
blackbody. For a spherical core, this would be  where
σsb = 5.67 × 10−8 watts m−2 K−4 is the Stefan–Boltzmann constant for
blackbody radiation. However, a molecular cloud core that is opaque at



visible wavelengths is not necessarily opaque at infrared wavelengths.
Interstellar dust grains are tiny, with a radius of 100 nanometers or less; for
such small grains, the cross-section for absorbing visible and infrared light is
a decreasing function of the wavelength λ. Figure 12.6 shows a nearby dark
nebula that is highly opaque at visible wavelengths, with τ ≈ 23 through its
center at λvis = 550 nm. However, at near infrared wavelengths it is much less
opaque: τ ≈ 4 at λnir = 1650 nm, so bright background stars can be glimpsed
through the dusty core at this wavelength. At far infrared wavelengths, the
core is largely transparent, with τ ≈ 0.03 at λfir ≈ 105 nm ≈ 0.1 mm. The
optical depth of the core will increase as it is compressed to smaller radii; if
ndust is the average number density of dust grains in the core, then 

 and therefore  However, different cores
have different dust properties, so we can’t say in the general case at what
degree of compression a core will become opaque at far infrared
wavelengths.

Figure 12.6 The dark nebula Barnard 68, which is at a distance d ≈ 125 pc from the Earth
and has a radius Rcore ≈ 15 000 AU ≈ 3 × 106 R⊙. Left: V-band image, at a wavelength λvis ≈
550 nm. Right: Near infrared image, at a wavelength λnir ≈ 1650 nm. [European Southern
Observatory]

Mathematically, we can take into account the possible non-opacity of the
core by writing its luminosity as



(12.48)

where the efficiency factor is fe ≤ 1. If the core is highly opaque at the
wavelength of emission, with τ ≫ 1, then we expect fe ≈ 1. However, if it is
largely transparent, with τ < 1, then we expect fe < 1. Scaled to the properties
of our standard molecular cloud core, the core’s radius is

(12.49)

and the luminosity actually emitted from the core at a temperature Tcore = 20
K is

(12.50)

Any efficiency factor greater than the extremely modest value fe ∼ 10−5 will
enable the actual luminosity (Equation 12.50) to be larger than the isothermal
luminosity required to maintain a constant temperature (Equation 12.47).

Let’s see what happens as our 15 M⊙ core collapses at a constant
temperature Tcore = 20 K. Since the Jeans mass, from Equation 12.42, has the
dependence MJ ∝ ρ−1/2T3/2, then if the temperature is constant, the Jeans
mass decreases as the core becomes smaller and its density thus becomes
larger. Consider what happens when the radius of the core decreases from
Rcore to Rcore/41/3 ≈ 0.63Rcore, and the density thus increases from ρcore to
4ρcore. The Jeans mass has now fallen by a factor of 1/2, and the 15 M⊙ core
is now unstable, splitting to form a pair of 7.5 M⊙ fragments. These fragments
continue to collapse until their density increases by another factor of 4, then
split into a total of four 3.75 M⊙ fragments; and so on, and so forth.

Hierarchical fragmentation, as this process of repeated subdivision is
called, naturally produces a power-law distribution of stellar masses, as long
as the fragmentation process is slightly inefficient. Suppose, for example, that



fragmentation has a failure rate of 1%. That is, if you start with 100 cores,
each of mass Mcore, 99 of them will split, forming 198 fragments each of
mass Mcore/2, but one will collapse directly to form a star of mass M⋆ = Mcore.
If the failure rate is the same at the next step, then of the 198 fragments of
mass Mcore/2, we expect that 196 will split, forming 392 subfragments, each
of mass Mcore/4, but two will collapse directly to form stars of mass M⋆ =
Mcore/2. As this process proceeds, you will expect one star of mass Mcore, two
of mass Mcore/2, four of mass Mcore/4, and so forth. In general, after the nth
round of fragmentation, there will be 2n stars that each have mass 2−nMcore.
Thus, the number of stars produced per logarithmic interval of mass will be

(12.51)

which is equivalent to an initial mass function χ(M) ∝ M−2. (The actual
initial mass function has the steeper dependence χ ∝ M−2.3. This is a sign that
the simple hierarchical fragmentation model doesn’t capture all the physics
involved.)

Starting with a core mass Mcore, after n rounds of fragmentation, the mass
of each fragment will be Mfrag = 2−nMcore and the density of each fragment
will be ρfrag = 22nρcore. What halts the fragmentation process after a finite
number of rounds, and prevents it from proceeding ad infinitum, producing
an infinite number of infinitesimal fragments? Notice that the isothermal
luminosity required to keep the fragments at a constant temperature Tcore = 20
K has the value (Equation 12.47)

(12.52)

However, since Mfrag ∝ 2−n and  the isothermal luminosity is the
same for every value of n. That is, every fragment, regardless of size, must
radiate at the same luminosity to maintain a temperature of 20 K. However,
since the actual luminosity is proportional to the square of the fragment’s



radius, smaller fragments will have lower luminosity. After some number of
rounds of fragmentation, the small fragments will find it impossible to radiate
away enough energy to keep cool.

The ratio of the actual luminosity of a fragment (Equation 12.50) to its
required isothermal luminosity (Equation 12.47) is

(12.53)

After n rounds of fragmentation, the characteristic fragment mass will be
Mfrag = 2−nMcore ≈ 2−n(15 M⊙), and the characteristic fragment density will be
ρfrag = 22nρcore ≈ 22n(10−15 kg m−3). The four-fold increase of density with
each round of fragmentation means that the ratio of the actual luminosity to
the required isothermal luminosity will decrease with each round of
fragmentation:

(12.54)

Fragmentation stops when this ratio drops to one, and the temperature of the
collapsing fragments starts to rise; this causes the Jeans mass to increase
instead of decrease as the fragments become denser. From Equation 12.54,
we find that cooling the fragments that result from n = 9 rounds of
fragmentation would require an unphysically high efficiency fe ≈ 3. Thus, the
maximum possible number of fragmentation rounds is n = 9, producing a
minimum fragment mass Mfrag ∼ 2−9Mcore ∼ 0.03 M⊙, within the broad
maximum of the initial mass function (Figure 7.1). Once fragments can no
longer keep cool, they become protostars, objects that are almost, but not
quite, in hydrostatic equilibrium. Protostars gradually contract inward as they
radiate away energy, but only on time scales much longer than the dynamical
time. A protostar with M > 0.08 M⊙ becomes a star when the density and
temperature at its center become large enough for nuclear fusion to begin.11

Hierarchical fragmentation requires that collapsing molecular cloud cores
are able to cool efficiently through multiple rounds of fragmentation. If



molecular cloud cores are very low in dust (which happens if they are
deficient in heavy elements such as carbon, oxygen, and silicon), this drives
down fe, and halts fragmentation at an earlier stage. Thus, star formation in
regions with low abundances of heavy elements has an initial mass function
that peaks at a higher mass. When the very first stars formed at the end of the
Dark Ages, there was no carbon, oxygen, and silicon; thus, there were no dust
grains at all. The first stars could cool only through much less efficient
processes involving molecular hydrogen. Thus, it is likely that the very first
stars that formed in the universe were not the result of hierarchical
fragmentation, but instead were all extremely massive stars, comparable in
size to the Jeans mass of the gas from which they formed. These ultramassive
stars would have lived fast and died young, ejecting the carbon, oxygen, and
other heavy elements that they formed into the surrounding gas.

The hierarchical fragmentation scenario obviously represents a highly
simplified “spherical isothermal cow that reproduces by fission.” Realistic
models of star formation must take into account, among other physical
processes, the effects of magnetic fields and of turbulence within molecular
clouds. In addition, the effects of angular momentum must be acknowledged.
An initially slowly spinning fragment, thanks to conservation of angular
momentum, will rotate more and more rapidly as it contracts adiabatically.
The net result will be a protostar, made from the material with lower angular
momentum, surrounded by a rotationally supported protoplanetary disk.
Protoplanetary disks, it is found observationally, are unstable to the formation
of the objects that we call “planets.” Planets are a common, but minor, side
effect of star formation. In the Solar System, for instance, the total mass of all
the planets is Mpl = 2.67 × 1027 kg, with more than two-thirds of this mass
provided by Jupiter. The total planet mass thus represents a small fraction of
the Sun’s mass: Mpl = 0.0013 M⊙. If the Sun is not unusual in having a
planetary system with a mass ∼ 0.13% of its own mass, then we can estimate
the density parameter of planets:

Ωpl,0 ∼ 0.0013Ω⋆,0 ∼ (0.0013)(0.003) ∼ 4 × 10−6. (12.55)

From one point of view, planets are unimportant, because they provide just a
few parts per million of the mass-energy density of the universe. From



another point of view, however, planets are vitally important; planets of the
right size, at the right distance from their parent star, provide a hospitable
environment for the evolution of beings who ask the questions “Where do we
come from?”, “What are we?”, and “Where are we going?”

Exercises
12.1 For the Schechter luminosity function of galaxies (Equation 12.21),

find the number density of galaxies more luminous than L, as a
function of L∗, Φ∗, and α. In the limit L → 0, show why α = −1 leads to
problems, mathematically speaking. What is a plausible physical
solution to this mathematical problem? [Hint: an acquaintance with
incomplete gamma functions will be useful.]

12.2 For the Schechter luminosity function of galaxies, find the total
luminosity density Ψ as a function of L∗, Φ∗, and α. What is the
numerical value of the luminosity density ΨV in the V band, given 

 and α = −1?
12.3 On a mass scale M = 1017 M⊙ the root mean square mass fluctuation is

δM/M = 0.12 today (see Figure 11.5). Do you expect to see any
gravitationally collapsed structures with a mass M = 1017 M⊙ in the
directly visible universe today? Explain why or why not.

12.4 The universe will end in a Big Rip if the dark energy takes the form of
phantom energy with w < −1 (see Exercise 5.5). Since energy density
has the dependence ε ∝ a−3(1+w), the energy density εp of phantom
energy increases as the universe expands; when εp/c2 becomes larger
than the mass density of a bound object, the object will be ripped apart.
Suppose that the universe contains both matter and phantom energy
with equation-of-state parameter wp = −1.1. If the density parameters
of the two components are Ωm,0 = 0.3 and Ωp,0 = 0.7, at what scale
factor agal will a galaxy comparable to our Milky Way Galaxy be
ripped apart? At what scale factor a⋆ will a star comparable to our Sun
be ripped apart? If H0 = 68 km s−1 Mpc−1, how many years before the
Big Rip will a galaxy be ripped apart? How many years before the Big



Rip will a sunlike star be ripped apart? [Hint: the Big Rip is defined as
the time trip when a → ∞. The result of Exercise 5.5 will be useful.]

1 You are slightly less dense than the Sun, so δyou ∼ 2 × 1030.
2 The fact that gas at 107 K is called “warm-hot” rather than “hot-hot” may seem like

laughable understatement. However, it is being contrasted with the X-ray-emitting
intracluster gas, which can reach T ∼ 108 K or more.

3 The term “quasar” is short for “quasi-stellar object,” referring to the fact that these
distant compact light sources are, like stars, unresolved by our telescopes. In other
respects, quasars are dissimilar to stars; they are not powered by nuclear fusion, and they
are tremendously more luminous than any single star.

4 Exactly when the first stars formed is understandably conjectural, given our lack of
direct observational evidence; most estimates fall in the range z = 50 → 20,
corresponding to t = 50 → 180 Myr.

5 The intense star-forming era from z = 4 to z = 1 is when all the action was, baryonically
speaking. We live today in a boring era, with fewer new stars and only feeble AGN.

6 This function is called the Schechter luminosity function, after the astronomer Paul
Schechter, who pioneered its use.

7 Although it sounds rather gruesome, “cannibalism” is the usual technical term for a
merger between a small galaxy and a large one.

8 “Bremsstrahlung,” in German, literally means “braking radiation.” As the electron
moves past the proton or ion, it emits a photon and loses kinetic energy. The alternative
name of “free-free radiation” refers to the fact that the electron starts out free and ends
free, without being captured by the proton or ion.

9 O, the futility of stars! Their mass provides < 10% of the baryonic density today, and
even after 13 billion years on the job, the helium they produce has increased the helium
mass fraction Y by only ∼ 10%, just as the starlight they emit has increased the photon
energy density εγ by only ∼ 10%.

10 A dark nebula isn’t called “dark” because it fails to interact with light (the way dark
matter is dark). It’s called “dark” because it absorbs light (the way dark chocolate is
dark).

11 A protostar with M < 0.08 M⊙ should really be called a “proto-brown-dwarf.”



Epilogue

A book dealing with an active field like cosmology can’t really have a neat,
tidy ending. Our understanding of the universe is still growing and evolving.
During the twentieth century, the growing weight of evidence pointed toward
the Hot Big Bang model, in which the universe started in a hot, dense state,
but gradually cooled as it expanded. At the end of the twentieth century and
the beginning of the twenty-first, cosmological evidence was gathered at an
increasing rate, refining our knowledge of the universe. As I write this
epilogue, on a clear spring day in the year 2016, the available evidence is
explained by a Benchmark Model that is spatially flat and that has an
expansion, which is currently accelerating. It seems that 69% of the energy
density of the universe is contributed by a cosmological constant (or other
form of “dark energy” with negative pressure). Only 31% of the energy
density is contributed by matter (and only 4.8% is contributed by the familiar
baryonic matter of which you and I are made).

However, many questions about the cosmos remain unanswered. Here are
a few of the questions that currently nag at cosmologists:

What are the precise values of cosmological parameters such as H0,
Ωm,0, and ΩΛ,0? Much effort has been invested in determining these
parameters, but still they are not pinned down absolutely.
What is the dark matter? It can’t be made entirely of baryons. It can’t
be made entirely of neutrinos. Most of the dark matter must be in the
form of some exotic stuff that has not yet been detected in laboratories.
What is the dark energy? Is it vacuum energy that plays the role of a
cosmological constant, or is it some other component of the universe
with −1 < w < −1/3? If it is vacuum energy, is it provided by a false
vacuum, driving a temporary inflationary stage, or are we finally
seeing the true vacuum energy?



What drove inflation during the early universe? Our knowledge of the
particle physics behind inflation is still sadly incomplete. Indeed, some
cosmologists pose the questions, “Did inflation take place at all during
the early universe? Is there another way to resolve the flatness, horizon,
and monopole problems?”
Why is the universe expanding? At one level, this question is easily
answered. The universe is expanding today because it was expanding
yesterday. It was expanding yesterday because it was expanding the
day before yesterday... However, when we extrapolate back to the
Planck time, we find that the universe was expanding then with a
Hubble parameter H ∼ 1/tP. What determined this set of initial
conditions? In other words, “What put the Bang in the Big Bang?”

The most interesting questions, however, are those that we are still too
ignorant to pose correctly. For instance, in ancient Egypt, a list of
unanswered questions in cosmology might have included “How high is the
dome that makes up the sky?” and “What’s the dome made of?” Severely
erroneous models of the universe obviously give rise to irrelevant questions.
The exciting, unsettling possibility exists that future observations will render
the now-promising Benchmark Model obsolete. I hope, patient reader, that
learning about cosmology from this book has encouraged you to become a
cosmologist yourself, and to join the scientists who are laboring to make my
book a quaint, out-of-date relic from a time when the universe was poorly
understood.



Table of Useful Constants

Fundamental constants

Gravitational constant G = 6.673 × 10−11 m3 kg−1 s−2

Speed of light c = 2.998 × 108 ms−1

Reduced Planck constant ħ = 1.055 × 10−34 J s = 6.582 × 10−16 eV s
Boltzmann constant k = 1.381 × 10−23 JK−1 = 8.617 × 10−5 eV K−1

Electron rest energy mec2 = 0.5110 MeV

Proton rest energy mpc2 = 938.272 MeV

Neutron rest energy mnc2 = 939.566 MeV

Planck units

Planck length ℓP = (Għ/c3)1/2 = 1.616 × 10−35 m

Planck mass MP = (ħc/G)1/2 = 2.177 × 10−8 kg

Planck time tP = (Għ/c5)1/2 = 5.391 × 10−44 s

Planck energy EP = (ħc5/G)1/2 = 1.956 × 109 J = 1.221 × 1028

eV
Planck temperature TP = EP/k = 1.417 × 1032 K

Conversion of units

Astronomical unit 1 AU = 1.496 × 1011 m
Megaparsec 1 Mpc = 3.086 × 1022 m
Solar mass 1 M⊙ = 1.989 × 1030 kg



Solar luminosity 1 L⊙ = 3.828 × 1026 Js−1

Gigayear 1 Gyr = 3.156 × 1016 s
Electron volt 1 eV = 1.602 × 10−19 J

Cosmological
parameters

Hubble constant H0 = 68 ± 2 kms−1 Mpc−1

Hubble time H0
−1 = (4.54 ± 0.13) × 1017 s = 14.4 ± 0.4 Gyr

Hubble distance c/H0 = (1.35 ± 0.04) × 1026 m = 4380 ± 130 Mpc

Critical energy density εc,0 = 4870 ± 290 MeV m−3

Critical mass density ρc,0 = εc,0/c2 = (8.7 ± 0.5) × 10−27 kg m−3
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flat universe
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baryon-to-photon ratio (η), 143, 151, 163, 176, 179, 183

smallness of, 182
baryonic Jeans mass (MJ), 212

after decoupling, 212
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energy density, 142
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teddy, 34, 43
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Big Bang, 5, 16–18
Big Bang nucleosynthesis, 169–180
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cluster of galaxies
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Copernican principle, 11
correlation function, 227

and power spectrum, 228
Cosmic Background Explorer (COBE), 144
cosmic microwave background, 23, 142

amplitude, 146
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and flatness of universe, 163
blackbody spectrum, 23, 144
compared to starlight, 71–72
cooling of, 25
correlation function, 158, 159
dipole distortion, 144
discovery of, 143
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origin of, 160–163
temperature fluctuations, 146, 157

cosmic neutrino background, 72, 139
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number density, 139

cosmic time (t), 43
cosmological constant (Λ), 63–66, 194

energy density, 64
pressure, 65

cosmological principle, 12
perfect, 17

cosmological proper time, see cosmic time
critical density (εc), 57

current value, 57
curvature
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curvature constant (κ), 40, 43

Dark Ages, 238
dark energy, 62, 69, 85, 226, 228
dark halo, 130
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cold, 221–222, 224–226
hot, 221–223
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nonbaryonic, 128
primordial black holes, 139

de Sitter universe, 83
deceleration parameter (q0), 103

Benchmark Model, 104
sign convention, 103

density fluctuations
lambda-dominated era, 215
matter-dominated era, 216

power spectrum, 219
radiation-dominated era, 215

density parameter (Ω), 57
baryons (Ωbary), 128
clusters of galaxies (Ωclus), 135
cosmological constant (ΩΛ), 73
matter (Ωm), 73, 123
planets (Ωpl), 254
radiation (Ωr), 72
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deuterium (D), 167
deuterium abundance, 181

determination of, 181
deuterium synthesis, 169, 174

compared to recombination, 175
temperature of, 176

deuteron-to-neutron ratio, 176
diproton, 173
distance modulus (m − M), 119
dust

interstellar, 249

Einstein radius (θE), 137, 138
Einstein tensor, 51
Einstein’s static universe, 65, 93

instability, 65
radius of curvature, 65



Einstein–de Sitter universe, 80
electron (e−), 19
electron volt (eV), 3
empty universe, 74

expanding, 75
static, 75

energy density (ε)
additive, 69
baryons, 142
CMB, 142
flat universe, single-component, 79
matter, 70
radiation, 70

entropy, 59
equation of state, 61, 69
equilibrium

chemical, 153, 175
hydrostatic, 134, 209
kinetic, 151, 170
thermal, 21, 151

equivalence principle, 28
and photons, 36
and teddy bears, 34

expansion
adiabatic, 58
superluminal speed, 45

false vacuum, 200
driving inflation, 201

Fermat’s principle, 36
first law of thermodynamics, 24, 58
flatness problem, 185–187

resolved by inflation, 194–195
fluid equation, 59, 61, 69
Fourier transform, 218
fractional ionization (X), 148, 154
free streaming, 222
freezeout, 172
Friedmann equation, 52, 61, 69, 186

with cosmological constant, 64



during inflation, 193
general relativistic, 55
Newtonian, 54

fundamental force, 190
electromagnetic, 27
electroweak, 190
Grand Unified Force, 190
gravitational, 27, 28
strong nuclear, 27
weak nuclear, 27, 172

galaxy
Andromeda (M31), 2, 10, 13, 129

distance, 115
Large Magellanic Cloud, 114, 115

distance to, 115
Milky Way, 2, 10, 129

central black hole, 237
luminosity of, 2
mass of, 130
mass-to-light ratio, 130
time of formation, 244

NGC 4874, 126
NGC 4889, 126

central black hole, 237
Small Magellanic Cloud, 114

galaxy formation, 243–247
cold flows, 248

galaxy luminosity function, 242
Gaussian field, 219
general relativity, 34–37

field equation, 37, 50, 51
geodesic, 36
geometry

Euclidean, 28
non-Euclidean, 49

gigayear (Gyr), 3
Grand Unified Theory (GUT), 189

phase transition, 191
gravitational instability, 206–209



gravitational lens, 136
cluster of galaxies, 138
MACHO, 136

gravitational potential energy, 131
gravity, Newton vs. Einstein, 36

helium (He), 167, 178
helium fraction (Y), 169

primordial, 173–174
homogeneity, 9, 11
horizon distance (dhor), 9, 79, 195

Benchmark Model, 98
flat universe

matter only, 80
radiation only, 81
single-component, 79

at last scattering, 189
horizon problem, 185, 187–189

and isotropy of CMB, 189
resolved by inflation, 195–197

Hot Big Bang, 5, 25
and production of CMB, 147

Hubble constant (H0), 13–15, 56, 103
Hubble distance (c/H), 17, 45
Hubble friction, 199, 201, 214
Hubble parameter (H), 56
Hubble time  16, 66

and age of universe, 16, 78
Hubble volume, 221
Hubble’s law, 13

consequence of expansion, 15
hydrogen (H), 167

inflation, 192–202
and density perturbations, 202
and flatness problem, 194–195
and horizon problem, 195–197
and monopole problem, 197

inflaton field, 198, 201
ionization energy (Q), 148



isotropy, 9–11

Jeans length (λJ), 210
radiation, 211

Keplerian rotation, 129
kinetic energy, 131

lambda, see cosmological constant
lambda CDM, 226
large scale structure, 204
last scattering, 147

time of (tls), 156
last scattering surface, 147

angular-diameter distance to, 157, 158, 189
thickness of, 157

Lemaître universe, 93
lepton, 19
lithium (Li), 167, 178
loitering universe, 93, 94
lookback time, 98

Benchmark Model, 99
luminosity distance (dL), 107, 110

flat universe, 109
vs. angular-diameter distance, 112

MACHO, 136–138
magnetic monopole, 191

energy density, 192
number density, 192

magnitude, 117
absolute, 118
apparent, 118

mass
gravitational (mg), 28
inertial (mi), 28

mass-to-light ratio
cluster, 134
galaxy, 130
star, 124

matter-dominated universe



fate of, 89
negative curvature, 87
positive curvature, 87

matter–lambda equality, 73, 91, 92
Matthew effect, 206
Maxwell’s equations, 31
mean free path, 149
megaparsec (Mpc), 2
megayear (Myr), 3
metric, 40

curved space, 40, 41
flat space, 40
homogeneous & isotropic, 41
Minkowski, 42
Robertson–Walker, 42

Milne universe, 75
molecular clouds, 248
moment of inertia, 132
monopole problem, 185, 189–192

resolved by inflation, 197

neutrino (ν), 20, 139, 222
flavors, 20
massive, 21

neutron (n), 19, 169
decay, 19, 170, 176

neutron-to-proton ratio, 171
after freezeout, 172

nuclear binding energy (B), 168
of deuterium, 168, 174
of helium, 168

nucleons, 167
null geodesic, 42

Minkowski space, 42
Robertson–Walker metric, 46

Olbers’ paradox, 6–9, 17, 142
optical depth (τ), 156

parallax distance, 106
parsec (pc), 2



particle horizon distance, see horizon distance
peculiar motion, 55
perfect gas law, 61
phase transition, 191

loss of symmetry, 191
photodissociation, 21, 174
photoionization, 21, 148
photon (γ), 21
photon decoupling, 147, 150, 155

time (tdec), 156
photon–baryon fluid, 162, 211
Planck (satellite), 144
Planck units

energy (EP), 3
length (ℓP), 3
mass (MP), 3
temperature (TP), 3
time (tP), 3, 82

Poisson distribution, 205, 220, 227
Poisson’s equation, 29, 63, 161

compared to field equation, 50
with cosmological constant, 64

power spectrum, 219, 223
and correlation function, 228
Harrison–Zel’dovich, 219, 221
scale invariant, 221

pressure (P)
additive, 70
negative, 60

proper distance (dp), 43
flat universe

lambda only, 83
matter only, 80
radiation only, 81
single-component, 79

Robertson–Walker metric, 44
time of emission, 77
time of observation, 76, 105

proton (p), 19, 169



protostar, 253
Pythagorean theorem, 37

quantum gravity, 82
quark, 19
quasar, 237

number density, 239

radiation–matter equality, 73, 95
radiative recombination, 148
radius of curvature (R), 40, 43
recombination, 147

compared to deuterium synthesis, 175
time of (trec), 154

recombination temperature
crude approximation, 151
refined calculation, 154

redshift (z), 12
related to scale factor, 45–47

related to time, 74
redshift survey, 204
reference frame, 30

inertial, 30
reheating, 201
reionization, 234

and cosmic microwave background, 235
redshift of (z∗), 237

time of (t∗), 237
Robertson–Walker metric, 42

Sachs–Wolfe effect, 162
Saha equation, 153, 175

nucleosynthetic analog, 175
scale factor (a), 42, 43

empty universe, 75
flat universe

lambda only, 83
matter + lambda, 90, 91
matter only, 80
radiation + matter, 95
radiation only, 81



single-component, 78
negative curvature

matter only, 88
positive curvature

matter only, 88
Taylor expansion, 102, 103

solar luminosity (L⊙), 2
solar mass (M⊙), 2
sound speed (cs), 210

baryonic gas, 212
photon gas, 212

special relativity, 30–34
first postulate, 31
second postulate, 31

spherical harmonics, 158
standard candle, 107

determining H0, 114
standard yardstick, 110

angular resolution, 113
star

initial mass function, 124, 248
main sequence, 124
spectral type, 124

star formation, 250–253
first stars, 253
rate  240

statistical weight, 152
Steady State, 17–18
stress-energy tensor, 51
supercluster, 11, 205
supersymmetry, 140

Theory of Everything (TOE), 190
Thomson cross-section (σe), 149, 172
Thomson scattering, 149
top-down scenario, 224
topological defect, 191

cosmic string, 191
domain wall, 191



magnetic monopole, 191
transformation

Galilean, 31
Lorentz, 32

triangle
in curved space, 38, 39
in flat space, 37

tritium (3He), 177
type Ia supernova, 116, 117

luminosity, 117

vacuum energy density, 66, 67
vs. Planck energy density, 67

Virgocentric flow, 116
virial temperature, 245
virial theorem, 133, 244

steady-state, 133
virialization, 244
visible universe, 80
void, 11, 205

Wilkinson Microwave Anisotropy Probe (WMAP), 144
WIMP, 23, 140, 221

year (yr), 2
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